OFFSET
0,8
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
A(n,k) is the coefficient of x^n in the expansion of 1/(n+1) * (1 - k*x - k*x^2)^(n+1).
A(n,k) = Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n,j) * binomial(n-j,j)/(j+1) = Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n,2*j) * A000108(j).
(n+2) * A(n,k) = -k * (2*n+1) * A(n-1,k) - k * (k+4) * (n-1) * A(n-2,k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, 0, 2, 6, 12, 20, 30, ...
0, 2, 4, 0, -16, -50, -108, ...
0, -3, -24, -63, -96, -75, 72, ...
0, -1, 48, 297, 896, 1875, 3024, ...
0, 11, 24, -621, -3904, -13125, -32184, ...
0, -15, -464, -1053, 6912, 53125, 200880, ...
MATHEMATICA
T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, May 08 2019
STATUS
approved