login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307946
Coefficient of x^n in 1/(n+1) * (1 - n*x - n*x^2)^(n+1).
2
1, -1, 2, 0, -96, 1875, -32184, 554631, -9773056, 172718325, -2874200000, 35973317666, 218394869760, -46968959184459, 2890848443624064, -147665402789062500, 7121567693920010240, -337669517265832692843, 15985827659730523364352, -759295252512454596032456
OFFSET
0,3
COMMENTS
Also coefficient of x^n in the expansion of 2/(1 + n*x + sqrt(1 + 2*n*x + n*(n+4)*x^2)).
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-n)^(n-k) * binomial(n,k) * binomial(n-k,k)/(k+1) = Sum_{k=0..floor(n/2)} (-n)^(n-k) * binomial(n,2*k) * A000108(k).
For n>0, a(n) = (-n)^n * Hypergeometric2F1(1/2 - n/2, -n/2, 2, -4/n). - Vaclav Kotesovec, May 12 2021
MATHEMATICA
a[0] = 1; a[n_] := Sum[(-n)^(n-k) * Binomial[n, 2*k] * CatalanNumber[k], {k, 0, Floor[n/2]}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
Join[{1}, Table[(-n)^n * Hypergeometric2F1[1/2 - n/2, -n/2, 2, -4/n], {n, 1, 20}]] (* Vaclav Kotesovec, May 12 2021 *)
PROG
(PARI) {a(n) = polcoef((1-n*x-n*x^2)^(n+1)/(n+1), n)}
(PARI) {a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, k)*binomial(n-k, k)/(k+1))}
(PARI) {a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1))}
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 07 2019
STATUS
approved