login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^n in 1/(n+1) * (1 - n*x - n*x^2)^(n+1).
2

%I #20 May 12 2021 03:07:30

%S 1,-1,2,0,-96,1875,-32184,554631,-9773056,172718325,-2874200000,

%T 35973317666,218394869760,-46968959184459,2890848443624064,

%U -147665402789062500,7121567693920010240,-337669517265832692843,15985827659730523364352,-759295252512454596032456

%N Coefficient of x^n in 1/(n+1) * (1 - n*x - n*x^2)^(n+1).

%C Also coefficient of x^n in the expansion of 2/(1 + n*x + sqrt(1 + 2*n*x + n*(n+4)*x^2)).

%H Seiichi Manyama, <a href="/A307946/b307946.txt">Table of n, a(n) for n = 0..386</a>

%F a(n) = Sum_{k=0..floor(n/2)} (-n)^(n-k) * binomial(n,k) * binomial(n-k,k)/(k+1) = Sum_{k=0..floor(n/2)} (-n)^(n-k) * binomial(n,2*k) * A000108(k).

%F For n>0, a(n) = (-n)^n * Hypergeometric2F1(1/2 - n/2, -n/2, 2, -4/n). - _Vaclav Kotesovec_, May 12 2021

%t a[0] = 1; a[n_] := Sum[(-n)^(n-k) * Binomial[n, 2*k] * CatalanNumber[k], {k, 0, Floor[n/2]}]; Array[a, 20, 0] // Flatten (* _Amiram Eldar_, May 12 2021 *)

%t Join[{1}, Table[(-n)^n * Hypergeometric2F1[1/2 - n/2, -n/2, 2, -4/n], {n, 1, 20}]] (* _Vaclav Kotesovec_, May 12 2021 *)

%o (PARI) {a(n) = polcoef((1-n*x-n*x^2)^(n+1)/(n+1), n)}

%o (PARI) {a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, k)*binomial(n-k, k)/(k+1))}

%o (PARI) {a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1))}

%Y Cf. A000108, A292716, A307911.

%K sign

%O 0,3

%A _Seiichi Manyama_, May 07 2019