login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307970
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3*A(x)^2.
7
1, 1, 1, 1, 2, 3, 4, 7, 12, 19, 32, 56, 96, 165, 290, 512, 902, 1601, 2862, 5124, 9198, 16585, 29990, 54336, 98702, 179742, 327942, 599432, 1097756, 2013737, 3699596, 6806866, 12541518, 23137270, 42736850, 79031394, 146309968, 271142469, 502978944, 933921458, 1735634266
OFFSET
0,5
COMMENTS
Shifts 3 places left when convolved with itself.
LINKS
FORMULA
G.f.: 1/(1 - x/(1 - x^3/(1 - x^3/(1 - x/(1 - x^3/(1 - x^3/(1 - x/(1 - x^3/(1 - x^3/(1 - ...)))))))))), a continued fraction.
Recurrence: a(n+3) = Sum_{k=0..n} a(k)*a(n-k).
a(n) ~ sqrt(3 + 4*r^4 + 8*r^5) / (4*sqrt(Pi)*n^(3/2)*r^(n+3)), where r = 0.51899425841331458784223152875297289010563957455264491744143... is the root of the equation 1 + r + r^2 = 1/(4*r^3). - Vaclav Kotesovec, Jul 03 2021
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 12*x^8 + 19*x^9 + 32*x^10 + ...
MAPLE
a:= proc(n) option remember; `if`(n<3, 1,
add(a(j)*a(n-3-j), j=0..n-3))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 08 2019
MATHEMATICA
terms = 40; A[_] = 0; Do[A[x_] = 1 + x + x^2 + x^3 A[x]^2 + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = Sum[a[k] a[n - k - 3], {k, 0, n - 3}]; a[0] = a[1] = a[2] = 1; Table[a[n], {n, 0, 40}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 08 2019
STATUS
approved