OFFSET
0,6
COMMENTS
Shifts 4 places left when convolved with itself.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..4000
FORMULA
G.f.: 1/(1 - x/(1 - x^4/(1 - x^4/(1 - x/(1 - x^4/(1 - x^4/(1 - x/(1 - x^4/(1 - x^4/(1 - ...)))))))))), a continued fraction.
Recurrence: a(n+4) = Sum_{k=0..n} a(k)*a(n-k).
G.f.: (1 - sqrt(1 - 4*x^4 - 4*x^5 - 4*x^6 - 4*x^7))/(2*x^4). - Vaclav Kotesovec, Sep 27 2023
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 8*x^9 + 13*x^10 + ...
MAPLE
a:= proc(n) option remember; `if`(n<4, 1,
add(a(j)*a(n-4-j), j=0..n-4))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 08 2019
MATHEMATICA
terms = 44; A[_] = 0; Do[A[x_] = 1 + x + x^2 + x^3 + x^4 A[x]^2 + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = Sum[a[k] a[n - k - 4], {k, 0, n - 4}]; a[0] = a[1] = a[2] = a[3] = 1; Table[a[n], {n, 0, 44}]
CoefficientList[Series[(1 - Sqrt[1 - 4*x^4 - 4*x^5 - 4*x^6 - 4*x^7])/(2*x^4), {x, 0, 40}], x] (* Vaclav Kotesovec, Sep 27 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 08 2019
STATUS
approved