login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307974
Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Numerators.
1
1, 1, -4, 2, -38, 3, -73, 4, -68, 5, -179, 6, -9218, 7, -19, 8, -3976, 9, 18143, 10, -89038, 11, 426463, 12, -118199108, 13, 4276511, 14, -11874736822, 15, 4307920527007, 16, -3854660524816, 17, 1288843929131, 18, -13157635776544491194, 19, 1464996956920721, 20, -130541359248224699708
OFFSET
0,3
COMMENTS
Denominators: 2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, ... .
Denominators 3, 15, 21, 15, 33, 1365, 3, 255, ... coincide with cosecant numbers A001897, except 1 (conjectured).
FORMULA
a(2*n+1) = n+1 (conjectured).
EXAMPLE
Successive differences show the data in the first column:
1/2, 1, 1/6, 0, -1/30, 0, 1/42, 0, ...
1/2, -5/6, -1/6, -1/30, 1/30, 1/42, ...
-4/3, 2/3, 2/15, 1/15, -1/105, ...
2, -8/15, -1/15, -8/105, ...
-38/15, 7/15, -1/105, ...
3, -10/21, ...
-73/21, ...
... .
The third column is A256671(n)/A256675(n).
MATHEMATICA
m = 40;
b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Numerator;
Table[a[n], {n, 0, m}]
(* Second program: *)
m = 40;
bb = CoefficientList[Series[x/(1 - Exp[-x]), {x, 0, m}], x]*Range[0, m]!;
bb[[1]] = 1/2; bb[[2]] = 1;
a[n_] := Differences[bb, n][[1]] // Numerator;
Table[a[n], {n, 0, m}] (* Jean-François Alcover, May 31 2019 *)
CROSSREFS
Cf. A001897, A027642, A164555, A176328 (for the second bisection), A256671/A256675, A306821 (denominators).
Sequence in context: A364878 A102015 A302890 * A303625 A123850 A280780
KEYWORD
sign,frac
AUTHOR
Paul Curtz, May 30 2019
STATUS
approved