OFFSET
0,3
COMMENTS
Denominators: 2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, ... .
Denominators 3, 15, 21, 15, 33, 1365, 3, 255, ... coincide with cosecant numbers A001897, except 1 (conjectured).
FORMULA
a(2*n+1) = n+1 (conjectured).
EXAMPLE
Successive differences show the data in the first column:
1/2, 1, 1/6, 0, -1/30, 0, 1/42, 0, ...
1/2, -5/6, -1/6, -1/30, 1/30, 1/42, ...
-4/3, 2/3, 2/15, 1/15, -1/105, ...
2, -8/15, -1/15, -8/105, ...
-38/15, 7/15, -1/105, ...
3, -10/21, ...
-73/21, ...
... .
MATHEMATICA
m = 40;
b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Numerator;
Table[a[n], {n, 0, m}]
(* Second program: *)
m = 40;
bb = CoefficientList[Series[x/(1 - Exp[-x]), {x, 0, m}], x]*Range[0, m]!;
bb[[1]] = 1/2; bb[[2]] = 1;
a[n_] := Differences[bb, n][[1]] // Numerator;
Table[a[n], {n, 0, m}] (* Jean-François Alcover, May 31 2019 *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Paul Curtz, May 30 2019
STATUS
approved