Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jun 04 2019 05:59:15
%S 1,1,-4,2,-38,3,-73,4,-68,5,-179,6,-9218,7,-19,8,-3976,9,18143,10,
%T -89038,11,426463,12,-118199108,13,4276511,14,-11874736822,15,
%U 4307920527007,16,-3854660524816,17,1288843929131,18,-13157635776544491194,19,1464996956920721,20,-130541359248224699708
%N Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Numerators.
%C Denominators: 2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, ... .
%C Denominators 3, 15, 21, 15, 33, 1365, 3, 255, ... coincide with cosecant numbers A001897, except 1 (conjectured).
%F a(2*n+1) = n+1 (conjectured).
%e Successive differences show the data in the first column:
%e 1/2, 1, 1/6, 0, -1/30, 0, 1/42, 0, ...
%e 1/2, -5/6, -1/6, -1/30, 1/30, 1/42, ...
%e -4/3, 2/3, 2/15, 1/15, -1/105, ...
%e 2, -8/15, -1/15, -8/105, ...
%e -38/15, 7/15, -1/105, ...
%e 3, -10/21, ...
%e -73/21, ...
%e ... .
%e The third column is A256671(n)/A256675(n).
%t m = 40;
%t b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
%t a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Numerator;
%t Table[a[n], {n, 0, m}]
%t (* Second program: *)
%t m = 40;
%t bb = CoefficientList[Series[x/(1 - Exp[-x]), {x, 0, m}], x]*Range[0, m]!;
%t bb[[1]] = 1/2; bb[[2]] = 1;
%t a[n_] := Differences[bb, n][[1]] // Numerator;
%t Table[a[n], {n, 0, m}] (* _Jean-François Alcover_, May 31 2019 *)
%Y Cf. A001897, A027642, A164555, A176328 (for the second bisection), A256671/A256675, A306821 (denominators).
%K sign,frac
%O 0,3
%A _Paul Curtz_, May 30 2019