login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216604
G.f. satisfies: A(x) = (1 + x*(1-x)*A(x)) * (1 + x^2*A(x)).
15
1, 1, 1, 2, 3, 4, 7, 12, 19, 33, 59, 102, 181, 329, 593, 1076, 1979, 3643, 6723, 12494, 23289, 43498, 81557, 153356, 288925, 545687, 1032997, 1958978, 3721819, 7083716, 13503311, 25778612, 49283755, 94345179, 180830195, 347006694, 666636809, 1282024484, 2467964693
OFFSET
0,4
COMMENTS
The radius of convergence of the g.f. A(x) equals 1/2, with A(1/2) = 4.
More generally, if A(x) = (1 + x*(t-x)*A(x)) * (1 + x^2*A(x)), |t|>0, then
A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k) )
where the radius of convergence r of the g.f. A(x) satisfies
r = (1-r)^2/(t-r) = (1-t*r)/(2*(1-r)) with A(r) = 1/(r*(1-r)) = 2/(1-t*r).
Number of Motzkin excursions of length n that avoid the patterns UU, UD and DH. A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0. - Andrei Asinowski, Dec 20 2019
LINKS
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, preprint, 2019.
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k) ).
G.f.: ((1-x) - sqrt( (1-x)^2 - 4*x^3*(1-x) )) / (2*x^3*(1-x)).
a(n) ~ 2^(n+2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 16 2013
a(n) = Sum_{q=0..n} 1/(q+1)*Sum_{r=0..q+1} C(n-2*q-2,n-r-q)*C(q+1,r-1)*C(q+1,r). - Vladimir Kruchinin, Jan 22 2019
a(n) = 1 + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Jan 28 2021
a(n) = Sum_{m=0..n/3} C(2*m,m)*C(n-2*m+1,n-3*m)/(n-2*m+1). - Vladimir Kruchinin, Jan 27 2022
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 19*x^8 + ...
The logarithm of the g.f. begins:
log(A(x)) = ((1-x) + x)*x + ((1-x)^2 + 2^2*x*(1-x) + x^2)*x^2/2 +
((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3)*x^3/3 +
((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4)*x^4/4 +
((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5)*x^5/5 + ...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 5*x^4/4 + 6*x^5/5 + 16*x^6/6 + 29*x^7/7 + 45*x^8/8 + 94*x^9/9 + 186*x^10/10 + ... + A217464(n)*x^n/n + ...
MATHEMATICA
CoefficientList[Series[((1 - x) - Sqrt[(1 - x)^2 - 4*x^3*(1 - x)])/(2*x^3 *(1 - x)), {x, 0, 50}], x] (* G. C. Greubel, Jan 24 2017 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=0, m, binomial(m, k)^2*x^k*(1-x)^(m-k) + x*O(x^n)))), n)}
(PARI) {a(n)=polcoeff(2/(1-x+sqrt((1-x)^2-4*x^3*(1-x) +x*O(x^n))), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023
(Maxima)
a(n):=sum(sum(binomial(n-2*q-2, n-r-q)*binomial(q+1, r-1)*binomial(q+1, r) , r, 0, q+1)/(q+1), q, 0, n); /* Vladimir Kruchinin, Jan 22 2019 */
a(n):=sum((binomial(2*m, m)*binomial(n-2*m+1, n-3*m))/(n-2*m+1), m, 0, n/3);
/*Vladimir Kruchinin, Jan 27 2022 */
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 10 2012
STATUS
approved