login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216434
G.f. satisfies: A(x) = (1 + x*(2-x)*A(x)) * (1 + x^2*A(x)).
4
1, 2, 4, 10, 27, 74, 208, 600, 1762, 5244, 15788, 48006, 147199, 454618, 1412960, 4416016, 13869998, 43756124, 138587784, 440523892, 1404849486, 4493472836, 14411800352, 46338611632, 149338703380, 482315951104, 1560824670460, 5060345244766, 16434480777703
OFFSET
0,2
COMMENTS
The radius of convergence of the g.f. A(x) is r = 1/(2+sqrt(2)) with A(r) = 2*(1+sqrt(2)).
More generally, if A(x) = (1 + x*(t-x)*A(x)) * (1 + x^2*A(x)), |t|>0, then
A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k) )
where the radius of convergence r of the g.f. A(x) satisfies
r = (1-r)^2/(t-r) = (1-t*r)/(2*(1-r)) with A(r) = 1/(r*(1-r)) = 2/(1-t*r).
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^k*(2-x)^(n-k) ).
G.f.: ((1-2*x) - sqrt( (1-2*x)^2 - 4*x^3*(2-x) )) / (2*x^3*(2-x)).
Recurrence: 2*(n+3)*a(n) = 3*(3*n+5)*a(n-1) - 6*(2*n+1)*a(n-2) + 4*(5*n-6)*a(n-3) - 4*(4*n-9)*a(n-4) + 4*(n-3)*a(n-5). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ 2^(n/2 + 5/4) * (1+sqrt(2))^(n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 18 2013, simplified Jan 21 2023
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 27*x^4 + 74*x^5 + 208*x^6 + 600*x^7 +...
The logarithm of the g.f. begins:
log(A(x)) = ((2-x) + x)*x + ((2-x)^2 + 2^2*x*(2-x) + x^2)*x^2/2 +
((2-x)^3 + 3^2*x*(2-x)^2 + 3^2*x^2*(2-x) + x^3)*x^3/3 +
((2-x)^4 + 4^2*x*(2-x)^3 + 6^2*x^2*(2-x)^2 + 4^2*x^3*(2-x) + x^4)*x^4/4 +
((2-x)^5 + 5^2*x*(2-x)^4 + 10^2*x^2*(2-x)^3 + 10^2*x^3*(2-x)^2 + 5^2*x^4*(2-x) + x^5)*x^5/5 +...
Explicitly,
log(A(x)) = 2*x + 4*x^2/2 + 14*x^3/3 + 44*x^4/4 + 132*x^5/5 + 412*x^6/6 + 1318*x^7/7 + 4236*x^8/8 + 13676*x^9/9 + 44424*x^10/10 +...
MATHEMATICA
CoefficientList[Series[((1 - 2*x) - Sqrt[(1 - 2*x)^2 - 4*x^3*(2 - x)])/(2*x^3*(2 - x)), {x, 0, 50}], x] (* G. C. Greubel, Feb 03 2017 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=0, m, binomial(m, k)^2*x^k*(2-x)^(m-k) + x*O(x^n)))), n)}
(PARI) {a(n)=polcoeff(2/(1-2*x+sqrt((1-2*x)^2-4*x^3*(2-x) +x*O(x^n))), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 10 2012
STATUS
approved