login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104383
Number of distinct partitions of triangular numbers n*(n+1)/2.
6
1, 1, 2, 4, 10, 27, 76, 222, 668, 2048, 6378, 20132, 64234, 206848, 671418, 2194432, 7215644, 23853318, 79229676, 264288462, 884987529, 2973772212, 10024300890, 33888946600, 114872472064, 390334057172, 1329347719190, 4536808055808, 15513418629884
OFFSET
0,3
COMMENTS
Equals row sums of triangle A104382. Asymptotics: a(n) ~ exp(Pi*sqrt((n^2+n)/6))/(2*6^(1/4))/(n^2+n)^(3/4).
REFERENCES
Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Eric Weisstein's World of Mathematics, Partition Function Q.
FORMULA
Limit_{n-->inf} a(n+1)/a(n) = exp(sqrt(Pi^2/6)) = 3.605822247984...
a(n) = A000009(A000217(n)). - Alois P. Heinz, Nov 24 2016
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= n-> b(n*(n+1)/2):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 24 2016
MATHEMATICA
Join[{1}, PartitionsQ/@Accumulate[Range[30]]] (* Harvey P. Dale, Dec 29 2012 *)
PROG
(PARI) {a(n)=polcoeff(prod(k=1, n*(n+1)/2, 1+x^k, 1+x*O(x^(n*(n+1)/2))), n*(n+1)/2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2005
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Aug 05 2016
STATUS
approved