login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066655 Number of partitions of n*(n-1)/2. 6
1, 1, 3, 11, 42, 176, 792, 3718, 17977, 89134, 451276, 2323520, 12132164, 64112359, 342325709, 1844349560, 10015581680, 54770336324, 301384802048, 1667727404093, 9275102575355, 51820051838712, 290726957916112, 1637293969337171, 9253082936723602 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Number of partitions of the number of edges of the complete graph of order n, K_n.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = p(n*(n-1)/2) = A000041(n*(n-1)/2).

a(n) ~ exp(Pi*sqrt(n*(n-1)/3))/(2*sqrt(3)*n*(n - 1)). - Ilya Gutkovskiy, Jan 13 2017

a(n) ~ exp(Pi*(n - 1/2) / sqrt(3)) / (2*sqrt(3)*n^2). - Vaclav Kotesovec, May 17 2018

EXAMPLE

a(4) = p(6) = 11.

MATHEMATICA

Table[PartitionsP[n(n-1)/2], {n, 1, 30}]

PROG

(MuPAD) combinat::partitions::count(binomial(n+2, n)) $n=-1..40 // Zerinvary Lajos, Apr 16 2007

(PARI) a(n) = numbpart(n*(n-1)/2); \\ Michel Marcus, Dec 18 2017

CROSSREFS

Cf. A000041, A000217, A007294, A104383.

Cf. A173519. - Reinhard Zumkeller, Feb 20 2010

Sequence in context: A211854 A200212 A149070 * A302421 A118166 A277888

Adjacent sequences:  A066652 A066653 A066654 * A066656 A066657 A066658

KEYWORD

nonn

AUTHOR

Roberto E. Martinez II, Jan 10 2002

EXTENSIONS

More terms from Vladeta Jovovic, Jan 12 2002

Edited by Dean Hickerson, Jan 14 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 15:50 EDT 2020. Contains 336255 sequences. (Running on oeis4.)