login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104386
Numbers k such that the average of the k-th and (k+1)-th primes is a repdigit.
3
2, 3, 4, 25, 29, 603, 6363181, 21366409911, 279238341033925, 2907021742443974, 11220808305309952, 11885037375341198280
OFFSET
1,1
FORMULA
(prime(k) + prime(k+1))/2 = repdigit.
PROG
(Python)
from itertools import count, islice
from sympy import isprime, prevprime, primepi
def agen():
for d in count(1):
ru = int("1"*d)
for r in range(ru, 10*ru, ru):
if r > 2:
p = prevprime(r)
if isprime(r + (r-p)) and prevprime(r+(r-p)) == p:
yield primepi(p)
print(list(islice(agen(), 7))) # Michael S. Branicky, Jun 30 2022
CROSSREFS
Cf. A054268.
Corresponding primes A104387, A104388, repdigits A104389.
Sequence in context: A055006 A139050 A043309 * A171558 A044906 A255312
KEYWORD
nonn,base,hard,more
AUTHOR
Zak Seidov, Mar 04 2005
EXTENSIONS
a(8) from Giovanni Resta, Apr 05 2006
a(9) from Michael S. Branicky, Jul 02 2022
a(10)-a(12) from Chai Wah Wu, Jun 01 2024
STATUS
approved