Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 17 2018 06:44:51
%S 1,1,2,4,10,27,76,222,668,2048,6378,20132,64234,206848,671418,2194432,
%T 7215644,23853318,79229676,264288462,884987529,2973772212,10024300890,
%U 33888946600,114872472064,390334057172,1329347719190,4536808055808,15513418629884
%N Number of distinct partitions of triangular numbers n*(n+1)/2.
%C Equals row sums of triangle A104382. Asymptotics: a(n) ~ exp(Pi*sqrt((n^2+n)/6))/(2*6^(1/4))/(n^2+n)^(3/4).
%D Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
%H G. C. Greubel, <a href="/A104383/b104383.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PartitionFunctionQ.html">Partition Function Q.</a>
%F Limit_{n-->inf} a(n+1)/a(n) = exp(sqrt(Pi^2/6)) = 3.605822247984...
%F a(n) = A000009(A000217(n)). - _Alois P. Heinz_, Nov 24 2016
%p with(numtheory):
%p b:= proc(n) option remember; `if`(n=0, 1, add(add(
%p `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
%p end:
%p a:= n-> b(n*(n+1)/2):
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 24 2016
%t Join[{1},PartitionsQ/@Accumulate[Range[30]]] (* _Harvey P. Dale_, Dec 29 2012 *)
%o (PARI) {a(n)=polcoeff(prod(k=1,n*(n+1)/2,1+x^k,1+x*O(x^(n*(n+1)/2))),n*(n+1)/2)}
%Y Cf. A000009, A000217, A066655, A104382.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Mar 04 2005
%E a(0)=1 prepended by _Alois P. Heinz_, Aug 05 2016