OFFSET
1,5
COMMENTS
REFERENCES
Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
LINKS
Alois P. Heinz, Rows n = 1..55, flattened
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Eric Weisstein's World of Mathematics, Partition Function Q.
FORMULA
T(n, 1) = T(n, n) = 1.
T(n, n-1) = A000065(n).
T(n, 2) = [(n*(n+1)/2-1)/2].
From Álvar Ibeas, Jul 23 2020: (Start)
T(n, k) = A008284((n-k+1)*(n+k)/2, k).
EXAMPLE
Rows begin:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 7, 12, 6, 1;
1, 10, 27, 27, 10, 1;
1, 13, 52, 84, 57, 14, 1;
1, 17, 91, 206, 221, 110, 21, 1;
1, 22, 147, 441, 674, 532, 201, 29, 1;
1, 27, 225, 864, 1747, 1945, 1175, 352, 41, 1;
1, 32, 331, 1575, 4033, 5942, 5102, 2462, 598, 55, 1; ...
PROG
(PARI) T(n, k)=if(n<k || k<1, 0, polcoeff(polcoeff( prod(i=1, n*(n+1)/2, 1+y*x^i, 1+x*O(x^(n*(n+1)/2))), n*(n+1)/2, x), k, y))
for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 04 2005
STATUS
approved