login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304482
Number A(n,k) of n-element subsets of [k*n] whose elements sum to a multiple of n. Square array A(n,k) with n, k >= 0 read by antidiagonals.
9
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 1, 0, 1, 4, 6, 8, 0, 0, 1, 5, 12, 30, 18, 1, 0, 1, 6, 20, 76, 126, 52, 0, 0, 1, 7, 30, 155, 460, 603, 152, 1, 0, 1, 8, 42, 276, 1220, 3104, 3084, 492, 0, 0, 1, 9, 56, 448, 2670, 10630, 22404, 16614, 1618, 1, 0, 1, 10, 72, 680, 5138, 28506, 98900, 169152, 91998, 5408, 0, 0
OFFSET
0,8
COMMENTS
When k=1 the only subset of [n] with n elements is [n] which sums to n(n+1)/2 and hence for n>0 and n even A(n,1) is zero and for n odd A(n,1) is one.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
FORMULA
A(n,k) = (-1)^n * (1/n) * Sum_{d|n} C(k*d,d)*(-1)^d*phi(n/d), boundary values A(0,0) = 1, A(n, 0) = 0, A(0, k) = 1.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 0, 2, 6, 12, 20, 30, 42, ...
0, 1, 8, 30, 76, 155, 276, 448, ...
0, 0, 18, 126, 460, 1220, 2670, 5138, ...
0, 1, 52, 603, 3104, 10630, 28506, 64932, ...
0, 0, 152, 3084, 22404, 98900, 324516, 874104, ...
0, 1, 492, 16614, 169152, 960650, 3854052, 12271518, ...
MAPLE
with(numtheory):
A:= (n, k)-> `if`(n=0, 1, add(binomial(k*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/n):
seq(seq(A(n, d-n), n=0..d), d=0..11);
MATHEMATICA
A[n_, k_] : = (-1)^n (1/n) Sum[Binomial[k d, d] (-1)^d EulerPhi[n/d], {d, Divisors[n]}]; A[0, 0] = 1; A[_, 0] = 0; A[0, _] = 1;
Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 23 2019 *)
PROG
(PARI) T(n, k)=if(n==0, 1, (-1)^n*sumdiv(n, d, binomial(k*d, d) * (-1)^d * eulerphi(n/d))/n)
for(n=0, 7, for(k=0, 7, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018
CROSSREFS
Main diagonal gives A318477.
Sequence in context: A342129 A292861 A292133 * A309021 A307968 A338501
KEYWORD
nonn,tabl
AUTHOR
Marko Riedel, Aug 28 2018
STATUS
approved