login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304479
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 4, 4, 8, 12, 12, 8, 16, 24, 19, 24, 16, 32, 64, 37, 37, 64, 32, 64, 184, 94, 110, 94, 184, 64, 128, 432, 202, 297, 297, 202, 432, 128, 256, 1088, 428, 869, 931, 869, 428, 1088, 256, 512, 2944, 965, 2325, 2870, 2870, 2325, 965, 2944, 512, 1024, 7360, 2134
OFFSET
1,2
COMMENTS
Table starts
...1....2....4.....8....16.....32......64......128......256.......512
...2....4...12....24....64....184.....432.....1088.....2944......7360
...4...12...19....37....94....202.....428......965.....2134......4692
...8...24...37...110...297....869....2325.....6379....17568.....48401
..16...64...94...297...931...2870....8058....25040....76568....231646
..32..184..202...869..2870..11079...35462...133597...471114...1710896
..64..432..428..2325..8058..35462..132348...573938..2341508...9662652
.128.1088..965..6379.25040.133597..573938..2942145.13964485..67899747
.256.2944.2134.17568.76568.471114.2341508.13964485.77098563.429574178
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +8*a(n-3) -8*a(n-4) -8*a(n-5) for n>6
k=3: [order 12] for n>13
k=4: [order 65] for n>67
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..1. .0..0..0..0. .0..1..1..1. .0..0..1..0
..0..1..1..0. .0..0..1..1. .0..0..0..1. .1..0..1..0. .0..0..0..1
..1..1..1..1. .0..1..1..1. .0..0..0..1. .0..0..0..1. .0..0..0..0
..1..1..1..1. .0..1..1..0. .1..0..0..0. .1..0..1..1. .1..0..0..0
..1..1..1..1. .1..1..1..0. .0..1..0..0. .1..0..1..1. .0..1..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A303794.
Sequence in context: A033740 A303800 A305245 * A316304 A304848 A316545
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 13 2018
STATUS
approved