The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242464 Number A(n,k) of n-length words w over a k-ary alphabet {a_1,...,a_k} such that w contains never more than j consecutive letters a_j (for 1<=j<=k); square array A(n,k), n>=0, k>=0, read by antidiagonals. 11
 1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 3, 0, 0, 1, 4, 8, 4, 0, 0, 1, 5, 15, 21, 5, 0, 0, 1, 6, 24, 56, 54, 7, 0, 0, 1, 7, 35, 115, 208, 140, 9, 0, 0, 1, 8, 48, 204, 550, 773, 362, 12, 0, 0, 1, 9, 63, 329, 1188, 2631, 2872, 937, 16, 0, 0, 1, 10, 80, 496, 2254, 6919, 12584, 10672, 2425, 21, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS The sequence of column k satisfies a linear recurrence with constant coefficients of order A015614(k+1) for k>1. LINKS Alois P. Heinz, Antidiagonals n = 0..120, flattened FORMULA G.f. of column k: 1/(1-Sum_{i=1..k} v(i)/(1+v(i))) with v(i) = (x-x^(i+1))/(1-x). EXAMPLE A(0,k) = 1 for all k: the empty word. A(1,5) = 5: [1], [2], [3], [4], [5]. A(2,4) = 15: [1,2], [1,3], [1,4], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [3,3], [3,4], [4,1], [4,2], [4,3], [4,4]. A(3,3) = 21: [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [1,3,3], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [2,3,3], [3,1,2], [3,1,3], [3,2,1], [3,2,2], [3,2,3], [3,3,1], [3,3,2], [3,3,3]. A(4,2) = 5: [1,2,1,2], [1,2,2,1], [2,1,2,1], [2,1,2,2], [2,2,1,2]. A(n,1) = 0 for n>1. A(n,0) = 0 for n>0. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, ... 0, 0, 3, 8, 15, 24, 35, 48, ... 0, 0, 4, 21, 56, 115, 204, 329, ... 0, 0, 5, 54, 208, 550, 1188, 2254, ... 0, 0, 7, 140, 773, 2631, 6919, 15443, ... 0, 0, 9, 362, 2872, 12584, 40295, 105804, ... 0, 0, 12, 937, 10672, 60191, 234672, 724892, ... MAPLE b:= proc(n, k, c, t) option remember; `if`(n=0, 1, add(`if`(c=t and j=c, 0, b(n-1, k, j, 1+`if`(j=c, t, 0))), j=1..k)) end: A:= (n, k)-> b(n, k, 0\$2): seq(seq(A(n, d-n), n=0..d), d=0..12); MATHEMATICA nn=10; Transpose[Map[PadRight[#, nn]&, Table[CoefficientList[Series[1/(1-Sum[v[i]/(1+v[i])/.v[i]->(z-z^(i+1))/(1-z), {i, 1, n}]), {z, 0, nn}], z], {n, 0, nn}]]]//Grid (* Second program: *) b[n_, k_, c_, t_] := b[n, k, c, t] = If[n == 0, 1, Sum[If[c == t && j == c, 0, b[n - 1, k, j, 1 + If[j == c, t, 0]]], {j, 1, k}]]; A[n_, k_] := b[n, k, 0, 0]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2020, after Maple *) CROSSREFS Columns k=0-10 give: A000007, A019590(n+1), A164001(n+1), A242452, A242495, A242509, A242629, A242630, A242631, A242632, A242633. Rows n=0-2 give: A000012, A001477, A005563(k-1) for k>0. Main diagonal gives A242635. Sequence in context: A309021 A307968 A338501 * A273185 A351776 A259784 Adjacent sequences: A242461 A242462 A242463 * A242465 A242466 A242467 KEYWORD nonn,tabl AUTHOR Geoffrey Critzer and Alois P. Heinz, May 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 10:12 EST 2024. Contains 370228 sequences. (Running on oeis4.)