login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220221
Odd positive integers k such that k^2 has at most three nonzero binary digits.
2
1, 3, 5, 7, 9, 17, 23, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297
OFFSET
1,2
COMMENTS
It is shown in the Szalay reference that if y is a term of this sequence then y=7, y=23, or y=2^t+1 for some positive t. Also see the Bennett reference.
LINKS
Michael A. Bennett, Perfect powers with few ternary digits, INTEGERS 12A (2012), #A3.
László Szalay, The equations 2^n+-2^m+-2^l=z^2, Indag. Math. 13 (2002) 131-142.
FORMULA
a(n) = 3*a(n-1)-2*a(n-2) for n>9. - Colin Barker, Nov 06 2014
G.f.: x*(12*x^8-2*x^7-10*x^6+4*x^5-2*x^4-2*x^3-2*x^2+1) / ((x-1)*(2*x-1)). - Colin Barker, Nov 06 2014
MATHEMATICA
Select[Range[1, 1000000, 2], Total[IntegerDigits[#^2, 2]] <= 3 &] (* T. D. Noe, Dec 07 2012 *)
CoefficientList[Series[(12 x^8 - 2 x^7 - 10 x^6 + 4 x^5 - 2 x^4 - 2 x^3 - 2 x^2 + 1) / ((x - 1) (2 x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 07 2014 *)
PROG
(PARI) is(n)=n%2 && hammingweight(n^2)<4 \\ Charles R Greathouse IV, Dec 10 2012
(PARI) Vec(x*(12*x^8-2*x^7-10*x^6+4*x^5-2*x^4-2*x^3-2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Nov 06 2014
(Magma) I:=[1, 3, 5, 7, 9, 17, 23, 33, 65, 129]; [n le 10 select I[n] else 3*Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Nov 07 2014
CROSSREFS
Cf. A212191 (exactly 3 powers).
Sequence in context: A084229 A191356 A144753 * A212292 A270837 A057482
KEYWORD
nonn,base,easy
AUTHOR
John W. Layman, Dec 07 2012
EXTENSIONS
Extended by T. D. Noe, Dec 07 2012
STATUS
approved