Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 08 2022 08:46:04
%S 1,3,5,7,9,17,23,33,65,129,257,513,1025,2049,4097,8193,16385,32769,
%T 65537,131073,262145,524289,1048577,2097153,4194305,8388609,16777217,
%U 33554433,67108865,134217729,268435457,536870913,1073741825,2147483649,4294967297
%N Odd positive integers k such that k^2 has at most three nonzero binary digits.
%C It is shown in the Szalay reference that if y is a term of this sequence then y=7, y=23, or y=2^t+1 for some positive t. Also see the Bennett reference.
%H Colin Barker, <a href="/A220221/b220221.txt">Table of n, a(n) for n = 1..1000</a>
%H Michael A. Bennett, <a href="http://www.emis.de/journals/INTEGERS/papers/a3self/a3self.Abstract.html">Perfect powers with few ternary digits</a>, INTEGERS 12A (2012), #A3.
%H László Szalay, <a href="http://dx.doi.org/10.1016/S0019-3577(02)90011-X">The equations 2^n+-2^m+-2^l=z^2</a>, Indag. Math. 13 (2002) 131-142.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F a(n) = 3*a(n-1)-2*a(n-2) for n>9. - _Colin Barker_, Nov 06 2014
%F G.f.: x*(12*x^8-2*x^7-10*x^6+4*x^5-2*x^4-2*x^3-2*x^2+1) / ((x-1)*(2*x-1)). - _Colin Barker_, Nov 06 2014
%t Select[Range[1, 1000000, 2], Total[IntegerDigits[#^2, 2]] <= 3 &] (* _T. D. Noe_, Dec 07 2012 *)
%t CoefficientList[Series[(12 x^8 - 2 x^7 - 10 x^6 + 4 x^5 - 2 x^4 - 2 x^3 - 2 x^2 + 1) / ((x - 1) (2 x - 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Nov 07 2014 *)
%o (PARI) is(n)=n%2 && hammingweight(n^2)<4 \\ _Charles R Greathouse IV_, Dec 10 2012
%o (PARI) Vec(x*(12*x^8-2*x^7-10*x^6+4*x^5-2*x^4-2*x^3-2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ _Colin Barker_, Nov 06 2014
%o (Magma) I:=[1,3,5,7,9,17,23,33,65,129]; [n le 10 select I[n] else 3*Self(n-1)-2*Self(n-2): n in [1..50]]; // _Vincenzo Librandi_, Nov 07 2014
%Y Cf. A212191 (exactly 3 powers).
%K nonn,base,easy
%O 1,2
%A _John W. Layman_, Dec 07 2012
%E Extended by _T. D. Noe_, Dec 07 2012