login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324165
The number of primes <= A324155(n).
2
2, 94, 88572, 1431655764, 405311584472655, 375279801995072058162, 2392926627528494733661481601, 44505401644584236815975682821886536, 9818959014098676479127822164411318257546629, 1111111111111111111111111111111111111111111111111110
OFFSET
2,1
COMMENTS
Also the number of zerofree numbers <= A324155(n).
Expressed in base n - 1 and starting with n = 3, the sequence is 1011110, 11111111110, 1111111111111110, 411111111111111111110, 211111111111111111111111110, 211111111111111111111111111111110, 211111111111111111111111111111111111110, 1111111111111111111111111111111111111111111110, 1111111111111111111111111111111111111111111111111110, ....
Ostensibly, the reason for that is the calculation formula (see Formula section) for the number of zerofree numbers <= x^m + y, with y < (x^(m+1)-1)/(x-1) - x^m. But the deeper reason is the definition of sequence A324155. Each term A324155(n) marks a point of intersection between the curve numOfZerofreeNum_n(x) [the number of base-n zerofree numbers <= x] and the curve pi(x) [the number of prime numbers <= x]. Since numOfZerofreeNum_n(x) doesn't change for relatively large intervals at x = k*n^m (approx. a portion of > 1/(k*n)), but grows similar to pi(x) for regions outside, it is likely, that the point of intersection lies between x = k*n^m and x = n^m*(k + 1/n + 1/n^2 + 1/n^3 + ... + 1/n^m). The chance is maximal for k = 1, since the density of primes becomes smaller for greater x. Nevertheless, k > could also happen as we can see for n = 6, 7, 8 and 9.
FORMULA
a(n) = pi(A324155(n)).
a(n) = numOfZerofreeNum_n(A324155(n)), where numOfZerofreeNum_n(x) is the number of base-n zerofree numbers <= x (cf. A324161).
a(n) = k*(n-1)^m + ((n-1)^m - 1)/(n-2) - 1, where m = floor(log_n(A324155(n))), k = floor(A324155(n)/n^m), and provided A324155(n) - k*n^m < (n^(m+1)-1)/(n-1) - n^m.
With d := log(n-1)/log(n):
a(n) <= ((n - 1)*(A324155(n) + 1)^d - 1)/(n - 2) - 1.
a(n) >= (((n - 1)*A324155(n) + n)^d - 1)/(n - 2) - 1.
a(n) < A324155(n) / (log(A324155(n)) - 1.1), for n > 3.
a(n) > A324155(n) / (log(A324155(n)) - 1), for n > 3.
EXAMPLE
a(2) = 2, since there are 2 primes <= A324155(2) = 4.
a(3) = 94, since there are 94 primes <= A324155(3) = 498.
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Mar 05 2019
STATUS
approved