login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324164
Number of primes <= A324154(n).
2
1, 2, 29523, 1431655764, 119209289550780, 204698073815493849906, 1288498953284574087356182400, 23736214210444926301853697505006152, 1090995446010964053236424684934590917505180, 1111111111111111111111111111111111111111111111111110
OFFSET
2,2
COMMENTS
Also the number of zerofree numbers <= A324154(n).
Expressed in base n - 1 and starting with n = 3, the sequence is 10, 1111111110, 1111111111111110, 111111111111111111110, 111111111111111111111111110, 111111111111111111111111111111110, 111111111111111111111111111111111111110, 111111111111111111111111111111111111111111110, 1111111111111111111111111111111111111111111111111110, ....
Ostensibly, the reason for that is the calculation formula (see Formula section) for the number of zerofree numbers <= x^m + y, with y < (x^(m+1)-1)/(x-1) - x^m. But the deeper reason is the definition of sequence A324154. Each term A324154(n) marks a point of intersection between the curve numOfZerofreeNum_n(x) [the number of base-n zerofree numbers <= x] and the curve pi(x) [the number of prime numbers <= x]. Since numOfZerofreeNum_n(x) doesn't change for relatively large intervals at x = k*n^m (approx. a portion of > 1/(k*n)), but grows similar to pi(x) for regions outside, it is likely, that the point of intersection lies between x = k*n^m and x = n^m*(k + 1/n + 1/n^2 + 1/n^3 + ... + 1/n^m). The chance is maximal for k = 1, since the density of primes becomes smaller for greater x.
FORMULA
a(n) = pi(A324154(n)).
a(n) = numOfZerofreeNum_n(A324154(n)), where numOfZerofreeNum_n(x) is the number of base-n zerofree numbers <= x (cf. A324161).
a(n) = k*(n-1)^m + ((n-1)^m - 1)/(n-2) - 1,
where m = floor(log_n(A324154(n))), k = floor(A324154(n)/n^m), and provided A324154(n) - k*n^m < (n^(m+1)-1)/(n-1) - n^m.
With d := log(n-1)/log(n):
a(n) <= ((n - 1)*(A324154(n) + 1)^d - 1)/(n - 2) - 1,
a(n) >= (((n - 1)*A324154(n) + n)^d - 1)/(n - 2) - 1.
a(n) < A324154(n) / (log(A324154(n)) - 1.1), for n > 3.
a(n) > A324154(n) / (log(A324154(n)) - 1), for n > 3.
EXAMPLE
a(2) = 1, since there is only one prime <= A324154(2) = 2.
a(3) = 2, since there are 2 primes <= A324154(3) = 3.
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Feb 22 2019
STATUS
approved