login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of primes <= A324154(n).
2

%I #21 Mar 28 2019 12:03:06

%S 1,2,29523,1431655764,119209289550780,204698073815493849906,

%T 1288498953284574087356182400,23736214210444926301853697505006152,

%U 1090995446010964053236424684934590917505180,1111111111111111111111111111111111111111111111111110

%N Number of primes <= A324154(n).

%C Also the number of zerofree numbers <= A324154(n).

%C Expressed in base n - 1 and starting with n = 3, the sequence is 10, 1111111110, 1111111111111110, 111111111111111111110, 111111111111111111111111110, 111111111111111111111111111111110, 111111111111111111111111111111111111110, 111111111111111111111111111111111111111111110, 1111111111111111111111111111111111111111111111111110, ....

%C Ostensibly, the reason for that is the calculation formula (see Formula section) for the number of zerofree numbers <= x^m + y, with y < (x^(m+1)-1)/(x-1) - x^m. But the deeper reason is the definition of sequence A324154. Each term A324154(n) marks a point of intersection between the curve numOfZerofreeNum_n(x) [the number of base-n zerofree numbers <= x] and the curve pi(x) [the number of prime numbers <= x]. Since numOfZerofreeNum_n(x) doesn't change for relatively large intervals at x = k*n^m (approx. a portion of > 1/(k*n)), but grows similar to pi(x) for regions outside, it is likely, that the point of intersection lies between x = k*n^m and x = n^m*(k + 1/n + 1/n^2 + 1/n^3 + ... + 1/n^m). The chance is maximal for k = 1, since the density of primes becomes smaller for greater x.

%F a(n) = pi(A324154(n)).

%F a(n) = numOfZerofreeNum_n(A324154(n)), where numOfZerofreeNum_n(x) is the number of base-n zerofree numbers <= x (cf. A324161).

%F a(n) = k*(n-1)^m + ((n-1)^m - 1)/(n-2) - 1,

%F where m = floor(log_n(A324154(n))), k = floor(A324154(n)/n^m), and provided A324154(n) - k*n^m < (n^(m+1)-1)/(n-1) - n^m.

%F With d := log(n-1)/log(n):

%F a(n) <= ((n - 1)*(A324154(n) + 1)^d - 1)/(n - 2) - 1,

%F a(n) >= (((n - 1)*A324154(n) + n)^d - 1)/(n - 2) - 1.

%F a(n) < A324154(n) / (log(A324154(n)) - 1.1), for n > 3.

%F a(n) > A324154(n) / (log(A324154(n)) - 1), for n > 3.

%e a(2) = 1, since there is only one prime <= A324154(2) = 2.

%e a(3) = 2, since there are 2 primes <= A324154(3) = 3.

%Y Cf. A011540, A052382, A324154, A324155, A324160, A324161, A324165.

%K nonn

%O 2,2

%A _Hieronymus Fischer_, Feb 22 2019