login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324160
Number of zero-containing nonnegative integers <= n.
13
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11
OFFSET
0,11
COMMENTS
This sequence represents the counting function of A011540.
n = n_max = 701 is the greatest number such that a(n) <= pi(n) [the number of primes <= n]. Thus, for all indices n > n_max, we have a(n) > pi(n). For n = n_max the number of primes is pi(n) = 126.
n = n_min = 510 is the least number (> 2) such that a(n) >= pi(n) [the number of primes <= n]. Thus, for all indices 2 < n < n_min, we have a(n) < pi(n). For n = n_min the number of primes is pi(n) = 97.
LINKS
FORMULA
With m := floor(log_10(n)); k := Max_{j | j = 1..m and (floor(n/10^j) mod 10)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k):= floor(n/10^k)*10^k:
a(n) = 2 + Sum_{j = 1..m} floor((b(n,k+1)-1)/10^j)*9^(j-1), if k = 0 (valid for n > 9),
a(n) = 2 + n mod 10^k + Sum_{j = 1..m} floor((b(n,k)-1)/10^j)*9^(j-1), if k > 0 (valid for n > 0),
a(n) = 2 + n mod 10^k - ceiling(fract(n/10))*(1-ceiling(k/(m+1))) + Sum_{j = 1..m} floor((b(n,k)-1)/10^j)*9^(j-1) (all k, valid for n > 0).
a(n) + A324161(n) = n + 1
a(A011540(n)) = n.
A011540(a(n)) <= n, for n >= 0.
A011540(a(n)) = n, iff n is a zero-containing number.
a(10*n + k) <= 9*a(n) + n - 8, k = 0..9, equality holds for k = 9, and also, if n is a zerofree number (i.e., contains no '0'-digit).
a(10*A052382(n) + k) = 10*A052382(n) + 1 - 9*n, k = 0..9.
Values for special indices:
a(k*(10^n-1)/9 - j) = k*(8*10^n - 9*9^n + 1)/72 + 1, n > 0, k = 1..9, j = 0..k.
a(k*10^n - j) = k*(10^n - 9^n) + 1 - (9^n - 1)/8, n >= 0, k = 1..10, j = 1..10.
a(10^n) = 10^n + 2 - (9^(n+1) - 1)/8, n > 0.
a(k*10^n + j) = k*(10^n - 9^n) + j + 2 - (9^n - 1)/8, n > 0, k = 1..9, 0 <= j < (10^(n+1)-1)/9 - 10^n.
With: d := log_10(9) = 0.95424250943932...
Upper bound:
a(n) <= n + 2 - ((9*n + 10)^d - 1)/8,
equality holds for n = (10^k - 1)/9 - 1, k > 0.
Lower bound:
a(n) >= n + 2 - (9*(n + 1)^d - 1)/8,
equality holds for n = 10^k - 1, k >= 0.
Asymptotic behavior:
a(n) <= n + 2 + (1/8) - (9^d/8)*n^d*(1 + O(1/n)).
a(n) >= n + 2 + (1/8) - (9/8)*n^d*(1 + O(1/n))).
a(n) = n*(1 + O(n^(d-1)) = n*(1 + O(1/n^0.045757490...)).
Lower and upper limits:
lim inf (a(n) - n)/n^d = -9/8, for n -> infinity.
lim sup (a(n) - n)/n^d = -9^d/8 = -1.0173931195971..., for n -> infinity.
From Hieronymus Fischer, Apr 04 2019: (Start)
Formulas for general bases b > 2:
With m := floor(log_b(n)); k := Max_{j | j=1..m and (floor(n/b^j) mod b)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k):= floor(n/b^k)*b^k:
a(n) = 2 + Sum_{j=1..m} floor((b(n,k+1)-1)/b^j)*(b-1)^(j-1), if k = 0, valid for n > b-1;
a(n) = 2 + n mod b^k + Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), if k > 0, valid for n > 0;
a(n) = 2 + n mod b^k - ceiling(fract(n/b))*(1-ceiling(k/(m+1))) + Sum_{j=1..m} floor((b(n,k)-1)/b^j)* (b-1)^(j-1), all k, valid for n > 0.
Formula for base b = 2: a(n) = (n + 1 - floor(log_2(n + 1))).
With d := d(b) := log(b - 1)/log(b):
Upper bound (b = 10 for this sequence):
a(n) <= n + 2 - (((b - 1)*n + b)^d - 1)/(b - 2),
equality holds for n = (b^k - 1)/(b - 1) - 1, k > 0.
Lower bound (b = 10 for this sequence):
a(n) >= n + 2 - ((b - 1)*(n + 1)^d - 1)/(b - 2),
equality holds for n = b^k - 1, k >= 0.
Asymptotic behavior (b = 10 for this sequence):
a(n) = n*(1 + O(n^(d(b)-1)), for b > 2,
a(n) = n*(1 + O(log(n)/n)), for b = 2.
Lower and upper limits:
lim inf (a(n) - n)/n^d(b) = -(b - 1)/(b - 2), for n -> infinity, for b > 2.
lim sup (a(n) - n)/n^d(b) = -(b - 1)^d/(b - 2) for n -> infinity, for b > 2.
In case of b = 2:
lim (a(n) - n)/log(n) = -1/log(2), for n -> infinity.
(End)
EXAMPLE
a(10) = 2, since there are two numbers <= 10 which contain a '0'-digit (0 and 10).
a(100) = 11.
a(10^3) = 182.
a(10^4) = 2621.
a(10^5) = 33572.
a(10^6) = 402131.
a(10^7) = 4619162
a(10^8) = 51572441.
a(10^9) = 564151952.
a(10^10) = 6077367551.
a(10^20) = 86322626358560955101.
a(10^50) = 99420200289176487252583981229013676068210129037751 = 9.9420200289176... *10^49
a(10^100) = 9.9997011842625...13575501*10^99.
a(10^1000) = 9.999999999999...564125755001*10^999
(here, the first 45 digits are 9's).
PROG
(PARI) a(n) = 1 + sum(k=1, n, vecmin(digits(k)) == 0); \\ Michel Marcus, Mar 20 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Feb 15 2019
STATUS
approved