login
A179051
Number of partitions of n into powers of 10 (cf. A011557).
11
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
OFFSET
0,11
COMMENTS
A179052 and A008592 give record values and where they occur.
FORMULA
a(n) = A133880(n) for n < 90; a(n) = A132272(n) for n < 100.
a(10^n) = A145513(n).
a(10*n) = A179052(n).
A179052(n) = a(A008592(n));
a(n) = p(n,1) where p(n,k) = if k<=n then p(10*[(n-k)/10],k)+p(n,10*k) else 0^n.
G.f.: Product_{k>=0} 1/(1 - x^(10^k)). - Ilya Gutkovskiy, Jul 26 2017
EXAMPLE
a(19) = #{10 + 9x1, 19x1} = 2;
a(20) = #{10 + 10, 10 + 10x1, 20x1} = 3;
a(21) = #{10 + 10 + 1, 10 + 11x1, 21x1} = 3.
MATHEMATICA
terms = 10001;
CoefficientList[Product[1/(1 - x^(10^k)) + O[x]^terms,
{k, 0, Log[10, terms] // Ceiling}], x]
(* Jean-François Alcover, Dec 12 2021, after Ilya Gutkovskiy *)
PROG
(Haskell)
a179051 = p 1 where
p _ 0 = 1
p k m = if m < k then 0 else p k (m - k) + p (k * 10) m
-- Reinhard Zumkeller, Feb 05 2012
CROSSREFS
Number of partitions of n into powers of b: A018819 (b=2), A062051 (b=3).
Sequence in context: A329624 A059995 A132272 * A324160 A054899 A061217
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 27 2010
STATUS
approved