OFFSET
0,3
COMMENTS
An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
FORMULA
Inverse binomial transform of A324168.
Binomial transform of A359984. - Andrew Howroyd, Jan 20 2023
EXAMPLE
The a(3) = 9 antichains:
{{1,2,3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
MATHEMATICA
nn=6;
croXQ[stn_]:=MatchQ[stn, {___, {___, x_, ___, y_, ___}, ___, {___, z_, ___, t_, ___}, ___}/; x<z<y<t||z<x<t<y];
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], SubsetQ[##]||croXQ[{#1, #2}]&], Union@@#==Range[n]&]], {n, 0, nn}]
PROG
(PARI) seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-x))/x) } \\ Andrew Howroyd, Jan 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 17 2019
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023
STATUS
approved