login
A376125
a(n) = 1 + Sum_{k=0..n-1} (2*k+1) * a(k) * a(n-k-1).
0
1, 2, 9, 67, 681, 8556, 126253, 2124340, 39991633, 831271006, 18893178381, 465972248083, 12394713108433, 353750057246236, 10784915257548041, 349874160411051511, 12036066260440602401, 437714593034154481686, 16780944423208533034861, 676482338975579658794689
OFFSET
0,2
FORMULA
G.f. A(x) satisfies: A(x) = 1 / ( (1 - x) * (1 - x * A(x) - 2 * x^2 * A'(x)) ).
a(n) ~ c * 2^n * n * n!, where c = 0.6018110636400677977754542011395053310779724922160159... - Vaclav Kotesovec, Sep 11 2024
MATHEMATICA
a[n_] := a[n] = 1 + Sum[(2 k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; A[_] = 0; Do[A[x_] = 1/((1 - x) (1 - x A[x] - 2 x^2 A'[x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 11 2024
STATUS
approved