login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158952
Inverse Euler transform of the number of partitions in expanding space (A023881).
1
1, 2, 9, 67, 625, 7903, 117649, 2105342, 43048905, 1000976352, 25937424601, 743191207969, 23298085122481, 793763217701693, 29192928060852217, 1152939097060278256, 48661191875666868481, 2185919903971766191000
OFFSET
1,2
FORMULA
a(n) = (1/n)*Sum_{d|n} sigma(d,d)*moebius(n/d).
a(n) ~ n^(n-1). - Vaclav Kotesovec, Oct 09 2019
EXAMPLE
Let G(x) = Sum_{n>=0} A023881(n)*x^n then
G(x) = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 725*x^5 + 8811*x^6 +...
G(x) = 1/[(1-x)*(1-x^2)^2*(1-x^3)^9*(1-x^4)^67*(1-x^5)^625*...].
MATHEMATICA
Table[Sum[DivisorSigma[d, d]*MoebiusMu[n/d], {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Oct 09 2019 *)
PROG
(PARI) {a(n)=(1/n)*sumdiv(n, d, sigma(d, d)*moebius(n/d))}
CROSSREFS
Sequence in context: A243281 A091795 A319286 * A324167 A376125 A296793
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 31 2009
STATUS
approved