login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158949
Inverse Moebius transform of A065958.
1
1, 6, 11, 26, 27, 66, 51, 106, 101, 162, 123, 286, 171, 306, 297, 426, 291, 606, 363, 702, 561, 738, 531, 1166, 677, 1026, 911, 1326, 843, 1782, 963, 1706, 1353, 1746, 1377, 2626, 1371, 2178, 1881, 2862, 1683, 3366, 1851, 3198, 2727, 3186, 2211, 4686, 2501
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/n^2)*Sum_{d|n} sigma_2(d)^2*moebius(n/d).
a(n) = Sum_{d|n} 2^omega(n/d) * d^2. - Daniel Suteu, Mar 07 2019
From Amiram Eldar, Dec 05 2022: (Start)
Multiplicative with a(p^e) = (p^(2*e)*(p^2+1) - 2)/(p^2-1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)^2/(3*zeta(6)) = 0.473436... . (End)
Dirichlet g.f.: zeta(s)^2*zeta(s-2)/zeta(2*s). - Amiram Eldar, Jan 06 2023
a(n) = Sum_{1 <= j, k <= n} tau(gcd(j, k, n)^2) = Sum_{d divides n} tau(d^2)* J_2(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024
a(n) = Sum_{d divides n} J_4(d)/J_2(d) = Sum_{1 <= i, j, k, l <= n} 1/(J_2(n/gcd(i,j,k,l,n))), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 23 2024
MAPLE
A158949 := proc(n) add(numtheory[sigma][2](d)^2*numtheory[mobius](n/d), d=numtheory[divisors](n))/n^2 ; end: seq( A158949(n), n=1..80) ; # R. J. Mathar, Apr 02 2009
MATHEMATICA
a[n_] := Sum[2^PrimeNu[n/d] d^2, {d, Divisors[n]}];
Array[a, 80] (* Jean-François Alcover, Nov 20 2020 *)
f[p_, e_] := (p^(2*e)*(p^2 + 1) - 2)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Dec 05 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, 2^omega(n/d) * d^2); \\ Daniel Suteu, Mar 07 2019
CROSSREFS
KEYWORD
easy,mult,nonn
AUTHOR
Vladeta Jovovic, Mar 31 2009
EXTENSIONS
Extended by R. J. Mathar, Apr 02 2009
STATUS
approved