login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of non-crossing antichain covers of {1,...,n}.
16

%I #9 Jan 20 2023 22:50:13

%S 1,1,2,9,67,633,6763,77766,938957,11739033,150649945,1973059212,

%T 26265513030,354344889798,4833929879517,66568517557803,

%U 924166526830701,12920482325488761,181750521972603049,2570566932237176232,36532394627404815308,521439507533582646156

%N Number of non-crossing antichain covers of {1,...,n}.

%C An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

%H Andrew Howroyd, <a href="/A324167/b324167.txt">Table of n, a(n) for n = 0..500</a>

%F Inverse binomial transform of A324168.

%F Binomial transform of A359984. - _Andrew Howroyd_, Jan 20 2023

%e The a(3) = 9 antichains:

%e {{1,2,3}}

%e {{1},{2,3}}

%e {{2},{1,3}}

%e {{3},{1,2}}

%e {{1,2},{1,3}}

%e {{1,2},{2,3}}

%e {{1,3},{2,3}}

%e {{1},{2},{3}}

%e {{1,2},{1,3},{2,3}}

%t nn=6;

%t croXQ[stn_]:=MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z<y<t||z<x<t<y];

%t stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];

%t Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ[##]||croXQ[{#1,#2}]&],Union@@#==Range[n]&]],{n,0,nn}]

%o (PARI) seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-x))/x) } \\ _Andrew Howroyd_, Jan 20 2023

%Y Cf. A000108, A000124, A000372 (antichains), A001006, A006126 (antichain covers), A014466, A048143, A054726 (non-crossing graphs), A099947, A261005, A283877, A306438.

%Y Cf. A324166, A324168, A324169, A324170, A324171, A324173, A359984 (no singletons).

%K nonn

%O 0,3

%A _Gus Wiseman_, Feb 17 2019

%E Terms a(9) and beyond from _Andrew Howroyd_, Jan 20 2023