login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346654
a(n) = Bell(2*n,n).
3
1, 2, 94, 12351, 3188340, 1362057155, 869725707522, 775929767223352, 921839901090823112, 1406921223577401454239, 2682502220690005671884710, 6248503930824315386034050253, 17460431497766377837983159782652, 57647207262184459310081410522242310, 222006095854149044448961838142906736554
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 4^n * exp((2/LambertW(2) - 3)*n) * n^(2*n) / (sqrt(1 + LambertW(2)) * LambertW(2)^(2*n)).
a(n) = A189233(2n,n) = A292860(2n,n). - Alois P. Heinz, Jul 27 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k)
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..14); # Alois P. Heinz, Jul 27 2021
MATHEMATICA
Table[BellB[2*n, n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jul 27 2021
STATUS
approved