OFFSET
1,2
COMMENTS
This sequence is infinite for the same reason that A324175 is: if x-1 > y > 1 satisfies x^2 - 3*y^2 = -2 (x=A001834(j), y=A001835(j+1), j>0), then x < 3*y. Let k = 3*y^2 + m. By the pigeonhole principle there exists a number m belonging to [0, 2*x - 2] such that x + y | 3*y^2 + m, so such a k is a term.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
MATHEMATICA
Select[Range[2000], Divisible[#, Floor[Sqrt[#]]+Floor[Sqrt[#/3]]]&] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/3))) == 0;
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Mar 08 2019
STATUS
approved