login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324176
Integers k such that floor(sqrt(k)) + floor(sqrt(k/3)) divides k.
4
1, 2, 6, 15, 18, 24, 32, 36, 45, 55, 72, 78, 84, 98, 105, 112, 136, 144, 152, 180, 198, 220, 230, 275, 336, 390, 403, 462, 525, 540, 608, 663, 697, 756, 774, 792, 836, 855, 874, 940, 980, 1050, 1092, 1144, 1166, 1265, 1368, 1392, 1500, 1525, 1586, 1638, 1755, 1782, 1848, 1904
OFFSET
1,2
COMMENTS
This sequence is infinite for the same reason that A324175 is: if x-1 > y > 1 satisfies x^2 - 3*y^2 = -2 (x=A001834(j), y=A001835(j+1), j>0), then x < 3*y. Let k = 3*y^2 + m. By the pigeonhole principle there exists a number m belonging to [0, 2*x - 2] such that x + y | 3*y^2 + m, so such a k is a term.
LINKS
MATHEMATICA
Select[Range[2000], Divisible[#, Floor[Sqrt[#]]+Floor[Sqrt[#/3]]]&] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/3))) == 0;
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Mar 08 2019
STATUS
approved