The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324176 Integers k such that floor(sqrt(k)) + floor(sqrt(k/3)) divides k. 4
 1, 2, 6, 15, 18, 24, 32, 36, 45, 55, 72, 78, 84, 98, 105, 112, 136, 144, 152, 180, 198, 220, 230, 275, 336, 390, 403, 462, 525, 540, 608, 663, 697, 756, 774, 792, 836, 855, 874, 940, 980, 1050, 1092, 1144, 1166, 1265, 1368, 1392, 1500, 1525, 1586, 1638, 1755, 1782, 1848, 1904 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is infinite for the same reason that A324175 is: if x-1 > y > 1 satisfies x^2 - 3*y^2 = -2 (x=A001834(j), y=A001835(j+1), j>0), then x < 3*y. Let k = 3*y^2 + m. By the pigeonhole principle there exists a number m belonging to [0, 2*x - 2] such that x + y | 3*y^2 + m, so such a k is a term. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 MATHEMATICA Select[Range[2000], Divisible[#, Floor[Sqrt[#]]+Floor[Sqrt[#/3]]]&] (* Harvey P. Dale, Jun 19 2021 *) PROG (PARI) is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/3))) == 0; CROSSREFS Cf. A001834, A001835, A324175. Sequence in context: A134891 A020947 A011777 * A294942 A227307 A129631 Adjacent sequences:  A324173 A324174 A324175 * A324177 A324178 A324179 KEYWORD nonn AUTHOR Jinyuan Wang, Mar 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 06:54 EDT 2022. Contains 353933 sequences. (Running on oeis4.)