The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324177 Integers k such that floor(sqrt(k)) + floor(sqrt(k/4)) divides k. 3
 1, 2, 3, 6, 12, 18, 24, 28, 35, 36, 45, 50, 60, 72, 91, 105, 120, 128, 144, 162, 171, 190, 210, 242, 264, 288, 300, 324, 351, 364, 392, 420, 465, 495, 528, 544, 576, 612, 629, 666, 702, 760, 798, 840, 860, 900, 945, 966, 1012, 1056, 1127, 1173, 1224, 1248, 1296 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS k = 36*j^2 is a term for j > 0. Other infinite families of terms are 36*j^2-29*j+5, 36*j^2-21*j+3, 36*j^2-12*j, 36*j^2-8*j,36*j^2+9*j,36*j^2+13*j+1,36*j^2+22*j+2, and 36*j^2+30*j+6.  These cover all terms <= 4676406 except 35. - Robert Israel, Jan 24 2020 LINKS Robert Israel, Table of n, a(n) for n = 1..3200 MAPLE filter:= n -> n mod (floor(sqrt(n))+floor(sqrt(n/4))) = 0: select(filter, [\$1..10000]); # Robert Israel, Jan 24 2020 MATHEMATICA Select[Range[1296], Mod[#, Floor@ Sqrt@ # + Floor@ Sqrt[#/4]] == 0 &] (* Giovanni Resta, Apr 05 2019 *) PROG (PARI) is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/4))) == 0; CROSSREFS Cf. A324174, A324175, A324176, A324178. Sequence in context: A032727 A323392 A174801 * A280681 A328899 A093687 Adjacent sequences:  A324174 A324175 A324176 * A324178 A324179 A324180 KEYWORD nonn AUTHOR Jinyuan Wang, Mar 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 09:39 EST 2022. Contains 350481 sequences. (Running on oeis4.)