login
A324177
Integers k such that floor(sqrt(k)) + floor(sqrt(k/4)) divides k.
3
1, 2, 3, 6, 12, 18, 24, 28, 35, 36, 45, 50, 60, 72, 91, 105, 120, 128, 144, 162, 171, 190, 210, 242, 264, 288, 300, 324, 351, 364, 392, 420, 465, 495, 528, 544, 576, 612, 629, 666, 702, 760, 798, 840, 860, 900, 945, 966, 1012, 1056, 1127, 1173, 1224, 1248, 1296
OFFSET
1,2
COMMENTS
k = 36*j^2 is a term for j > 0.
Other infinite families of terms are 36*j^2-29*j+5, 36*j^2-21*j+3, 36*j^2-12*j, 36*j^2-8*j,36*j^2+9*j,36*j^2+13*j+1,36*j^2+22*j+2, and 36*j^2+30*j+6. These cover all terms <= 4676406 except 35. - Robert Israel, Jan 24 2020
LINKS
MAPLE
filter:= n -> n mod (floor(sqrt(n))+floor(sqrt(n/4))) = 0:
select(filter, [$1..10000]); # Robert Israel, Jan 24 2020
MATHEMATICA
Select[Range[1296], Mod[#, Floor@ Sqrt@ # + Floor@ Sqrt[#/4]] == 0 &] (* Giovanni Resta, Apr 05 2019 *)
PROG
(PARI) is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/4))) == 0;
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Mar 09 2019
STATUS
approved