login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324179
Number of distinct values A297167 obtains over divisors > 1 of n, minus number of prime factors of n counted with multiplicity: a(n) = A324190(n) - A001222(n).
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0
OFFSET
1,56
COMMENTS
a(n) is zero for all prime powers (A000961), but also for many other numbers.
FORMULA
a(n) = A324190(n) - A001222(n).
a(n) <= A324192(n).
EXAMPLE
Divisors of 56 larger than 1 are [2, 4, 7, 8, 14, 28, 56]. When A297167 is applied to each, one obtains values: [0, 1, 3, 2, 3, 4, 5], of which 6 values are distinct (as one of them, 3, occurs twice). On the other hand, 56 = 2 * 2 * 2 * 7 has four prime factors in total, thus a(56) = 6 - 4 = 2.
PROG
(PARI)
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));
A324190(n) = #Set(apply(A297167, select(d -> d>1, divisors(n))));
A324179(n) = (A324190(n)-bigomega(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 19 2019
STATUS
approved