

A112341


Number of primes between (prime(n)1)^2 and prime(n)^2.


1



2, 2, 3, 4, 5, 5, 7, 6, 7, 9, 8, 9, 12, 9, 10, 16, 13, 16, 15, 21, 15, 18, 19, 18, 21, 23, 20, 24, 23, 25, 29, 28, 23, 27, 33, 32, 27, 32, 33, 30, 29, 36, 34, 37, 37, 37, 38, 41, 45, 38, 39, 49, 47, 45, 53, 46, 53, 46, 45, 49, 53, 51, 48, 49, 55, 51, 62, 66, 61, 61, 60, 66, 63, 61
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..74.


FORMULA

a(n) = A000720(A000040(n)^2)  A000720((A000040(n)1)^2).  Chandler
Begin with the first prime, compute square root, take floor and add 1. If result is a prime number then begin the count for that prime value. Increment the count until prime value changes.


EXAMPLE

a(5)=5 because for primes 101103107109113 the floor of the square root of each is 10. for each 10, 1 is added, so for prime 11 the count is 5.


MATHEMATICA

f[n_] := PrimePi[Prime[n]^2]  PrimePi[(Prime[n]  1)^2]; Table[f[n], {n, 74}] (* Ray Chandler, Sep 06 2005 *)


PROG

(UBASIC) 10 A=1 20 B=nxtprm(B) 30 C=int(sqrt(B)) 40 D=C+1 50 if E=D then N=N+1:else print N:N=1:stop 60 if D=prmdiv(D) then print B; C; D; "" 70 E=D 80 goto 20


CROSSREFS

Cf. A112342.
Sequence in context: A241730 A011884 A029070 * A242774 A183003 A307779
Adjacent sequences: A112338 A112339 A112340 * A112342 A112343 A112344


KEYWORD

easy,nonn


AUTHOR

Enoch Haga, Sep 05 2005


EXTENSIONS

Edited by Ray Chandler, Sep 06 2005


STATUS

approved



