login
A005024
Number of walks of length 2n+8 in the path graph P_9 from one end to the other.
(Formerly M4526)
3
8, 43, 196, 820, 3264, 12597, 47652, 177859, 657800, 2417416, 8844448, 32256553, 117378336, 426440955, 1547491404, 5610955132, 20332248992, 73645557469, 266668876540, 965384509651, 3494279574288, 12646311635088, 45764967830976
OFFSET
1,1
REFERENCES
W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. J. Everett, P. R. Stein, The combinatorics of random walk with absorbing barriers, Discrete Math. 17 (1977), no. 1, 27-45.
C. J. Everett, P. R. Stein, The combinatorics of random walk with absorbing barriers, Discrete Math. 17 (1977), no. 1, 27-45. [Annotated scanned copy]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
From Emeric Deutsch, Apr 02 2004: (Start)
G.f. (assuming a(0)=1): 1/(1 - 8x + 21x^2 - 20x^3 + 5x^4) - 1.
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4). (End)
a(k) = sum(binomial(8+2k, 10j+k-2)-binomial(8+2k, 10j+k-1), j=-infinity..infinity) (a finite sum).
MAPLE
a:=k->sum(binomial(8+2*k, 10*j+k-2), j=ceil((2-k)/10)..floor((10+k)/10))-sum(binomial(8+2*k, 10*j+k-1), j=ceil((1-k)/10)..floor((9+k)/10)): seq(a(k), k=1..28);
A005024:=-(-8+21*z-20*z**2+5*z**3)/(5*z**2-5*z+1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
CoefficientList[Series[(-5 z^3 + 20 z^2 - 21 z + 8)/((z^2 - 3 z + 1) (5 z^2 - 5 z + 1)), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
CoefficientList[Series[(1 / x) (1 / (1 - 8 x + 21 x^2 - 20 x^3 + 5 x^4) - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)
PROG
(PARI) x='x+O('x^66); Vec(-1+1/((1-3*x+x^2)*(1-5*x+5*x^2))) \\ Joerg Arndt, May 01 2013
(Magma) I:=[8, 43, 196, 820]; [n le 4 select I[n] else 8*Self(n-1)-21*Self(n-2)+20*Self(n-3)-5*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 08 2013
CROSSREFS
Cf. A005023. Truncated version of A094865.
Sequence in context: A000429 A055853 A137748 * A094865 A122880 A171479
KEYWORD
nonn,easy,walk
EXTENSIONS
Better definition from Emeric Deutsch, Apr 02 2004
STATUS
approved