OFFSET
1,10
COMMENTS
The sums of eight successive terms give A000070. - Omar E. Pol, Jul 12 2012
a(n) is also the difference between the sum of 8th largest and the sum of 9th largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
FORMULA
From Peter Bala, Dec 26 2013: (Start)
a(n) + a(n+2) + a(n+4) + a(n+6) = A024786(n).
O.g.f.: x^8/(1 - x^8) * product {k >= 1} 1/(1 - x^k) = x^8 + x^9 + 2*x^10 + 3*x^11 + ....
Asymptotic result: log(a(n)) ~ 2*sqrt(Pi^2/6)*sqrt(n) as n -> inf. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*Pi*sqrt(2*n)) * (1 - 97*Pi/(24*sqrt(6*n)) + (97/48 + 6337*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016
MAPLE
b:= proc(n, i) option remember; local g;
if n=0 or i=1 then [1, 0]
else g:= `if`(i>n, [0$2], b(n-i, i));
b(n, i-1) +g +[0, `if`(i=8, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
MATHEMATICA
Table[ Count[ Flatten[ IntegerPartitions[n]], 8], {n, 1, 53} ]
(* second program: *)
b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 8, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved