OFFSET
1,6
COMMENTS
The sums of four successive terms give A000070. - Omar E. Pol, Jul 12 2012
a(n) is also the difference between the sum of 4th largest and the sum of 5th largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012
a(n+4) is the number of n-vertex graphs that do not contain a triangle, P_4, or K_2,3 as induced subgraph. These are the K_2,3-free bipartite cographs. Bipartite cographs are graph that are disjoint unions of complete bipartite graphs [Babel et al. Corollary 2.2], and forbidding K_2,3 leaves one possible component for each size except size 4, where there are two. Thus, this number is A000041(n) + a(n) = a(n+4). - Falk Hüffner, Jan 11 2016
a(n) (n>=3) is the number of even singletons in all partitions of n-2 (by a singleton we mean a part that occurs exactly once). Example: a(7) = 3 because in the partitions [5], [4*,1], [3,2*], [3,1,1], [2,2,1], [2*,1,1,1], [1,1,1,1,1] we have 3 even singletons (marked by *). The statement of this comment can be obtained by setting k=2 in Theorem 2 of the Andrews et al. reference. - Emeric Deutsch, Sep 13 2016
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
G. E. Andrews and E. Deutsch, A note on a method of Erdos and the Stanley-Elder theorems, Integers, 16 (2016), A24.
L. Babel, A. Brandstädt, and V. B. Le, Recognizing the P4-structure of bipartite graphs, Discrete Appl. Math. 93 (1999), 157-168.
David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
FORMULA
From Peter Bala, Dec 26 2013: (Start)
O.g.f.: x^4/(1 - x^4) * product {k >= 1} 1/(1 - x^k) = x^4 + x^5 + 2*x^6 + 3*x^7 + ....
Asymptotic result: log(a(n)) ~ 2*sqrt(Pi^2/6)*sqrt(n) as n -> inf. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*Pi*sqrt(2*n)) * (1 - 49*Pi/(24*sqrt(6*n)) + (49/48 + 1633*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016
G.f.: x^4/((1 - x)*(1 - x^2)*(1 - x^3)*(1 - x^4)) * Sum_{n >= 0} x^(4*n)/( Product_{k = 1..n} 1 - x^k ); that is, convolution of A026810 (partitions into 4 parts, or, modulo offset differences, partitions into parts <= 4) and A008484 (partitions into parts >= 4). - Peter Bala, Jan 17 2021
EXAMPLE
From Omar E. Pol, Oct 25 2012: (Start)
For n = 7 we have:
--------------------------------------
. Number
Partitions of 7 of 4's
--------------------------------------
7 .............................. 0
4 + 3 .......................... 1
5 + 2 .......................... 0
3 + 2 + 2 ...................... 0
6 + 1 .......................... 0
3 + 3 + 1 ...................... 0
4 + 2 + 1 ...................... 1
2 + 2 + 2 + 1 .................. 0
5 + 1 + 1 ...................... 0
3 + 2 + 1 + 1 .................. 0
4 + 1 + 1 + 1 .................. 1
2 + 2 + 1 + 1 + 1 .............. 0
3 + 1 + 1 + 1 + 1 .............. 0
2 + 1 + 1 + 1 + 1 + 1 .......... 0
1 + 1 + 1 + 1 + 1 + 1 + 1 ...... 0
------------------------------------
. 7 - 4 = 3
The difference between the sum of the fourth column and the sum of the fifth column of the set of partitions of 7 is 7 - 4 = 3 and equals the number of 4's in all partitions of 7, so a(7) = 3.
(End)
MAPLE
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0$2], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+`if`(i=4, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
MATHEMATICA
Table[ Count[ Flatten[ IntegerPartitions[n]], 4], {n, 1, 50} ]
(* second program: *)
b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 4, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved