login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116861
Triangle read by rows: T(n,k) is the number of partitions of n such that the sum of the parts, counted without multiplicities, is equal to k (n>=1, k>=1).
74
1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 1, 3, 1, 1, 3, 1, 1, 4, 1, 0, 3, 2, 2, 2, 5, 1, 1, 3, 3, 2, 4, 2, 6, 1, 0, 5, 2, 3, 4, 4, 3, 8, 1, 1, 4, 3, 4, 7, 4, 5, 3, 10, 1, 0, 5, 3, 4, 7, 7, 6, 6, 5, 12, 1, 1, 6, 4, 3, 12, 6, 8, 7, 9, 5, 15, 1, 0, 6, 4, 5, 10, 10, 9, 10, 11, 10, 7, 18, 1, 1, 6, 4, 5, 15, 11, 13, 9, 16, 11, 13, 8, 22
OFFSET
1,6
COMMENTS
Conjecture: Reverse the rows of the table to get an infinite lower-triangular matrix b with 1's on the main diagonal. The third diagonal of the inverse of b is minus A137719. - George Beck, Oct 26 2019
Proof: The reversed rows yield the matrix I+N where N is strictly lower triangular, N[i,j] = 0 for j >= i, having its 2nd diagonal equal to the 2nd column (1, 0, 1, 0, 1, ...): N[i+1,i] = A000035(i), i >= 1, and 3rd diagonal equal to the 3rd column of this triangle, (2, 1, 2, 3, 3, 3, ...): N[i+2,i] = A137719(i), i >= 1. It is known that (I+N)^-1 = 1 - N + N^2 - N^3 +- .... Here N^2 has not only the second but also the 3rd diagonal zero, because N^2[i+2,i] = N[i+2,i+1]*N[i+1,i] = A000035(i+1)*A000035(i) = 0. Therefore the 3rd diagonal of (I+N)^-1 is equal to -A137719 without leading 0. - M. F. Hasler, Oct 27 2019
From Gus Wiseman, Aug 27 2023: (Start)
Also the number of ways to write n-k as a nonnegative linear combination of a strict integer partition of k. Also the number of ways to write n as a (strictly) positive linear combination of a strict integer partition of k. Row n=7 counts the following:
7*1 . 1*2+5*1 1*3+4*1 1*3+2*2 1*5+2*1 1*7
2*2+3*1 2*3+1*1 1*4+3*1 1*3+1*2+2*1 1*4+1*3
3*2+1*1 1*5+1*2
1*6+1*1
1*4+1*2+1*1
(End)
LINKS
P. J. Rossky, M. Karplus, The enumeration of Goldstone diagrams in many-body perturbation theory, J. Chem. Phys. 64 (1976) 1569, equation (16)(1).
FORMULA
G.f.: -1 + Product_{j>=1} (1 + t^j*x^j/(1-x^j)).
Sum_{k=1..n} T(n,k) = A000041(n).
T(n,n) = A000009(n).
Sum_{k=1..n} k*T(n,k) = A014153(n-1).
T(n,1) = 1. T(n,2) = A000035(n+1). T(n,3) = A137719(n-2). - R. J. Mathar, Oct 27 2019
T(n,4) = A002264(n-1) + A121262(n). - R. J. Mathar, Oct 28 2019
EXAMPLE
T(10,7) = 4 because we have [6,1,1,1,1], [4,3,3], [4,2,2,1,1] and [4,2,1,1,1,1] (6+1=4+3=4+2+1=7).
Triangle starts:
1;
1, 1;
1, 0, 2;
1, 1, 1, 2;
1, 0, 2, 1, 3;
1, 1, 3, 1, 1, 4;
1, 0, 3, 2, 2, 2, 5;
1, 1, 3, 3, 2, 4, 2, 6;
1, 0, 5, 2, 3, 4, 4, 3, 8;
1, 1, 4, 3, 4, 7, 4, 5, 3, 10;
1, 0, 5, 3, 4, 7, 7, 6, 6, 5, 12;
1, 1, 6, 4, 3, 12, 6, 8, 7, 9, 5, 15;
...
MAPLE
g:= -1+product(1+t^j*x^j/(1-x^j), j=1..40): gser:= simplify(series(g, x=0, 18)): for n from 1 to 14 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 14 do seq(coeff(P[n], t^j), j=1..n) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; local f, g, j;
if n=0 then [1] elif i<1 then [ ] else f:= b(n, i-1);
for j to n/i do
f:= zip((x, y)->x+y, f, [0$i, b(n-i*j, i-1)[]], 0)
od; f
fi
end:
T:= n-> subsop(1=NULL, b(n, n))[]:
seq(T(n), n=1..20); # Alois P. Heinz, Feb 27 2013
MATHEMATICA
max = 14; s = Series[-1+Product[1+t^j*x^j/(1-x^j), {j, 1, max}], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
Table[Length[Select[IntegerPartitions[n], Total[Union[#]]==k&]], {n, 0, 10}, {k, 0, n}] (* Gus Wiseman, Aug 29 2023 *)
PROG
(PARI) A116861(n, k, s=0)={forpart(X=n, vecsum(Set(X))==k&&s++, k); s} \\ M. F. Hasler, Oct 27 2019
CROSSREFS
Cf. A000041 (row sums), A000009 (diagonal), A014153.
Cf. A114638 (count partitions with #parts = sum(distinct parts)).
Column 1: A000012, column 2: A000035(1..), column 3: A137719(1..).
For subsets instead of partitions we have A026820.
This statistic is ranked by A066328.
The central diagonal is T(2n,n) = A364910(n), non-strict A364907.
Partial sums of columns are columns of A364911.
Same as A364916 (offset 0) with rows reversed.
A008284 counts partitions by length, strict A008289.
A364912 counts linear combinations of partitions.
A364913 counts combination-full partitions, strict A364839.
Sequence in context: A316523 A219185 A365658 * A340032 A327785 A105242
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 27 2006
STATUS
approved