OFFSET
1,6
COMMENTS
Conjecture: Reverse the rows of the table to get an infinite lower-triangular matrix b with 1's on the main diagonal. The third diagonal of the inverse of b is minus A137719. - George Beck, Oct 26 2019
Proof: The reversed rows yield the matrix I+N where N is strictly lower triangular, N[i,j] = 0 for j >= i, having its 2nd diagonal equal to the 2nd column (1, 0, 1, 0, 1, ...): N[i+1,i] = A000035(i), i >= 1, and 3rd diagonal equal to the 3rd column of this triangle, (2, 1, 2, 3, 3, 3, ...): N[i+2,i] = A137719(i), i >= 1. It is known that (I+N)^-1 = 1 - N + N^2 - N^3 +- .... Here N^2 has not only the second but also the 3rd diagonal zero, because N^2[i+2,i] = N[i+2,i+1]*N[i+1,i] = A000035(i+1)*A000035(i) = 0. Therefore the 3rd diagonal of (I+N)^-1 is equal to -A137719 without leading 0. - M. F. Hasler, Oct 27 2019
From Gus Wiseman, Aug 27 2023: (Start)
Also the number of ways to write n-k as a nonnegative linear combination of a strict integer partition of k. Also the number of ways to write n as a (strictly) positive linear combination of a strict integer partition of k. Row n=7 counts the following:
7*1 . 1*2+5*1 1*3+4*1 1*3+2*2 1*5+2*1 1*7
2*2+3*1 2*3+1*1 1*4+3*1 1*3+1*2+2*1 1*4+1*3
3*2+1*1 1*5+1*2
1*6+1*1
1*4+1*2+1*1
(End)
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
P. J. Rossky, M. Karplus, The enumeration of Goldstone diagrams in many-body perturbation theory, J. Chem. Phys. 64 (1976) 1569, equation (16)(1).
FORMULA
EXAMPLE
T(10,7) = 4 because we have [6,1,1,1,1], [4,3,3], [4,2,2,1,1] and [4,2,1,1,1,1] (6+1=4+3=4+2+1=7).
Triangle starts:
1;
1, 1;
1, 0, 2;
1, 1, 1, 2;
1, 0, 2, 1, 3;
1, 1, 3, 1, 1, 4;
1, 0, 3, 2, 2, 2, 5;
1, 1, 3, 3, 2, 4, 2, 6;
1, 0, 5, 2, 3, 4, 4, 3, 8;
1, 1, 4, 3, 4, 7, 4, 5, 3, 10;
1, 0, 5, 3, 4, 7, 7, 6, 6, 5, 12;
1, 1, 6, 4, 3, 12, 6, 8, 7, 9, 5, 15;
...
MAPLE
g:= -1+product(1+t^j*x^j/(1-x^j), j=1..40): gser:= simplify(series(g, x=0, 18)): for n from 1 to 14 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 14 do seq(coeff(P[n], t^j), j=1..n) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; local f, g, j;
if n=0 then [1] elif i<1 then [ ] else f:= b(n, i-1);
for j to n/i do
f:= zip((x, y)->x+y, f, [0$i, b(n-i*j, i-1)[]], 0)
od; f
fi
end:
T:= n-> subsop(1=NULL, b(n, n))[]:
seq(T(n), n=1..20); # Alois P. Heinz, Feb 27 2013
MATHEMATICA
max = 14; s = Series[-1+Product[1+t^j*x^j/(1-x^j), {j, 1, max}], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
Table[Length[Select[IntegerPartitions[n], Total[Union[#]]==k&]], {n, 0, 10}, {k, 0, n}] (* Gus Wiseman, Aug 29 2023 *)
PROG
(PARI) A116861(n, k, s=0)={forpart(X=n, vecsum(Set(X))==k&&s++, k); s} \\ M. F. Hasler, Oct 27 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 27 2006
STATUS
approved