login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219185
Number of prime pairs {p,q} (p>q) with 3(p-q)-1 and 3(p-q)+1 both prime such that p+(1+(n mod 2))q=n.
10
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 1, 0, 3, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 0, 1, 1, 2, 1, 1, 3, 1, 5, 2, 1, 2, 1, 0, 2, 0, 2, 3, 4, 2, 3, 3, 2, 2, 1, 3, 2, 1, 1, 2, 0, 0, 2, 1, 3, 2, 3
OFFSET
1,16
COMMENTS
Conjecture: a(n)>0 for all odd n>4676 and even n>30986.
This conjecture has been verified for n up to 5*10^7. It implies Goldbach's conjecture, Lemoine's conjecture and the twin prime conjecture.
EXAMPLE
a(11)=1 since 11=5+2*3, and both 3(5-3)-1=5 and 3(5-3)+1=7 are prime.
a(16)=2 since 16=11+5=13+3, and 3(11-5)-1, 3(11-5)+1, 3(13-3)-1, 3(13-3)+1 are all prime.
MATHEMATICA
a[n_]:=a[n]=Sum[If[PrimeQ[n-(1+Mod[n, 2])Prime[k]]==True&&PrimeQ[3(n-(2+Mod[n, 2])Prime[k])-1]==True&&PrimeQ[3(n-(2+Mod[n, 2])Prime[k])+1]==True, 1, 0],
{k, 1, PrimePi[(n-1)/(2+Mod[n, 2])]}]
Do[Print[n, " ", a[n]], {n, 1, 100000}]
PROG
(PARI) a(n)=if(n%2, aOdd(n), aEven(n))
aOdd(n)=my(s); forprime(q=2, (n-1)\3, my(p=n-2*q); if(isprime(n-2*q) && isprime(3*n-9*q-1) && isprime(3*n-9*q+1), s++)); s
aEven(n)=my(s); forprime(q=2, n/2, if(isprime(n-q) && isprime(3*n-6*q-1) && isprime(3*n-6*q+1), s++)); s
\\ Charles R Greathouse IV, Jul 31 2016
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 13 2012
STATUS
approved