login
A219186
Positive integers n such that 1+(k-2)*U_m(k,1)^2 does not divide n-k for any 3<=k<n and m>=1, where U(k,1) is a Lucas sequence.
0
1, 2, 3, 4, 6, 8, 14, 18, 20, 24, 32, 38, 42, 44, 54, 60, 62, 68, 72, 74, 80, 90, 98, 104, 108, 110, 114, 132, 140, 150, 152, 158, 164, 168, 180, 182, 194, 198, 200, 212, 234, 240, 242, 258, 270, 272, 278, 284, 294, 308, 312, 332, 338, 348, 350, 360, 368, 374, 380, 384, 398, 402, 410, 420, 422, 432, 434, 440, 450, 458, 464
OFFSET
1,2
COMMENTS
Related to solubility of generalized Markov equation x_1^2 + x_2^2 + ... + x_n^2 = k*x_1*x_2*...*x_n.
The sequence is infinite as proved by Baoulina and Luca.
LINKS
I. Baoulina and F. Luca, On positive integers with a certain nondivisibility property, Annales Mathematicae et Informaticae 35 (2008), pp. 11-19.
CROSSREFS
Sequence in context: A018137 A084239 A283022 * A049708 A000031 A298072
KEYWORD
nonn
AUTHOR
Max Alekseyev, Nov 14 2012
STATUS
approved