OFFSET
0,2
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..500
K. Reihani, C*-algebras from Anzai flows and their K-groups, arXiv preprint arXiv:math/0311425 [math.OA], 2003.
K. Reihani, K-theory of Furstenberg transformation group C^*-algebras, arXiv preprint arXiv:1109.4473 [math.OA], 2011.
FORMULA
a(n) = constant term of prod(i=1, n, 1+t^(i-.5(n+1))) for odd n and a(n) = constant term of (1+t^(.5))*prod(i=1, n, 1+t^(i-.5(n+1))) for even n.
Sums of antidiagonals of A067059, i.e. a(n) is sum over k of number of partitions of [k(n-k)/2] into up to k parts each no more than n-k. Close to 2^(n+1)*sqrt(6/(Pi*n^3)) and seems to be even closer to something like 2^(n+1)*sqrt(6/(Pi*(n^3+0.9*n^2-0.1825*n+1.5))). - Henry Bottomley, Jul 20 2003
MAPLE
A084239 := proc(n)
local tt, c ;
if type(n, 'odd') then
product( 1+t^(i-(n+1)/2), i=1..n) ;
else
(1+t^(1/2))*product( 1+t^(i-(n+1)/2), i=1..n) ;
end if;
tt := expand(%) ;
for c in tt do
if c = lcoeff(c) then
return c ;
end if;
end do:
end proc: # R. J. Mathar, Nov 13 2016
MATHEMATICA
a[n_] := SeriesCoefficient[If[OddQ[n], 1, 1 + Sqrt[t]]*Product[1 + t^(i - (n + 1)/2), {i, n}], {t, 0, 0}];
Array[a, 36, 0] (* Jean-François Alcover, Nov 24 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Kamran Reihani (reyhan_k(AT)modares.ac.ir), Jun 21 2003
EXTENSIONS
More terms from Henry Bottomley, Jul 20 2003
STATUS
approved