OFFSET
0,5
COMMENTS
Also the number of ways to write any number up to n as a positive linear combination of a strict integer partition of k.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
G.f.: A(x,y) = (1/(1 - x)) * Product_{k>=1} (1 - y^k + y^k/(1 - x^k)). - Andrew Howroyd, Jan 11 2024
EXAMPLE
Triangle begins:
1
1 1
1 2 1
1 3 1 2
1 4 2 3 2
1 5 2 5 3 3
1 6 3 8 4 4 4
1 7 3 11 6 6 6 5
1 8 4 14 9 8 10 7 6
1 9 4 19 11 11 14 11 9 8
1 10 5 23 14 15 21 15 14 11 10
1 11 5 28 17 19 28 22 20 17 15 12
1 12 6 34 21 22 40 28 28 24 24 17 15
1 13 6 40 25 27 50 38 37 34 35 27 22 18
1 14 7 46 29 32 65 49 50 43 51 38 35 26 22
1 15 7 54 33 38 79 62 63 59 68 55 50 41 32 27
Row n = 5 counts the following partitions:
. 1 2 3 4 5
1+1 2+2 1+2 1+3 1+4
1+1+1 1+1+2 1+1+3 2+3
1+1+1+1 1+1+1+2
1+1+1+1+1 1+2+2
Row n = 5 counts the following positive linear combinations:
. 1*1 1*2 1*3 1*4 1*5
2*1 2*2 1*2+1*1 1*3+1*1 1*3+1*2
3*1 1*2+2*1 1*3+2*1 1*4+1*1
4*1 1*2+3*1
5*1 2*2+1*1
MATHEMATICA
Table[Length[Select[Array[IntegerPartitions, n+1, 0, Join], Total[Union[#]]==k&]], {n, 0, 9}, {k, 0, n}]
PROG
(PARI) T(n)={[Vecrev(p) | p<-Vec(prod(k=1, n, 1 - y^k + y^k/(1 - x^k), 1/(1 - x) + O(x*x^n)))]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024
CROSSREFS
Column n = k is A000009.
Column k = 0 is A000012.
Column k = 1 is A000027.
Row sums are A000070.
Column k = 2 is A008619.
Columns are partial sums of columns of A116861.
Column k = 3 appears to be the partial sums of A137719.
Diagonal n = 2k is A364910.
A114638 counts partitions where (length) = (sum of distinct parts).
A116608 counts partitions by number of distinct parts.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 27 2023
STATUS
approved