login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066328
a(n) = sum of indices of distinct prime factors of n; here, index(i-th prime) = i.
56
0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 3, 6, 5, 5, 1, 7, 3, 8, 4, 6, 6, 9, 3, 3, 7, 2, 5, 10, 6, 11, 1, 7, 8, 7, 3, 12, 9, 8, 4, 13, 7, 14, 6, 5, 10, 15, 3, 4, 4, 9, 7, 16, 3, 8, 5, 10, 11, 17, 6, 18, 12, 6, 1, 9, 8, 19, 8, 11, 8, 20, 3, 21, 13, 5, 9, 9, 9, 22, 4, 2, 14, 23, 7, 10, 15, 12, 6, 24, 6, 10
OFFSET
1,3
COMMENTS
Equals row sums of triangle A143542. - Gary W. Adamson, Aug 23 2008
a(n) = the sum of the distinct parts of the partition with Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(75) = 5; indeed, the partition having Heinz number 75 = 3*5*5 is [2,3,3] and 2 + 3 = 5. - Emeric Deutsch, Jun 04 2015
FORMULA
G.f.: Sum_{k>=1} k*x^prime(k)/(1-x^prime(k)). - Vladeta Jovovic, Aug 11 2004
Additive with a(p^e) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = A056239(A007947(n)). - Antti Karttunen, Sep 06 2018
a(n) = Sum_{p|n} A000720(p), where p is a prime. - Ridouane Oudra, Aug 19 2019
EXAMPLE
a(24) = 1 + 2 = 3 because 24 = 2^3 * 3 = p(1)^3 * p(2), p(k) being the k-th prime.
From Gus Wiseman, Mar 09 2019: (Start)
The distinct prime indices of 1..20 and their sums.
1: () = 0
2: (1) = 1
3: (2) = 2
4: (1) = 1
5: (3) = 3
6: (1+2) = 3
7: (4) = 4
8: (1) = 1
9: (2) = 2
10: (1+3) = 4
11: (5) = 5
12: (1+2) = 3
13: (6) = 6
14: (1+4) = 5
15: (2+3) = 5
16: (1) = 1
17: (7) = 7
18: (1+2) = 3
19: (8) = 8
20: (1+3) = 4
(End)
MAPLE
with(numtheory): seq(add(pi(d), d in factorset(n)), n=1..100); # Ridouane Oudra, Aug 19 2019
MATHEMATICA
PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_] := (Plus @@ PrimePi[ PrimeFactors[n]]); Table[ f[n], {n, 91}] (* Robert G. Wilson v, May 04 2004 *)
PROG
(PARI) { for (n=1, 1000, f=factor(n); a=0; for (i=1, matsize(f)[1], a+=primepi(f[i, 1])); write("b066328.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 10 2010
(PARI) a(n)=my(f=factor(n)[, 1]); sum(i=1, #f, primepi(f[i])) \\ Charles R Greathouse IV, May 11 2015
(PARI) A066328(n) = vecsum(apply(primepi, (factor(n)[, 1]))); \\ Antti Karttunen, Sep 06 2018
(Python)
from sympy import primepi, primefactors
def A066328(n): return sum(map(primepi, primefactors(n))) # Chai Wah Wu, Mar 13 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Jan 01 2002
STATUS
approved