The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066325 Coefficients of unitary Hermite polynomials He_n(x). 14
 1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 3, 0, -6, 0, 1, 0, 15, 0, -10, 0, 1, -15, 0, 45, 0, -15, 0, 1, 0, -105, 0, 105, 0, -21, 0, 1, 105, 0, -420, 0, 210, 0, -28, 0, 1, 0, 945, 0, -1260, 0, 378, 0, -36, 0, 1, -945, 0, 4725, 0, -3150, 0, 630, 0, -45, 0, 1, 0, -10395, 0, 17325, 0, -6930, 0, 990, 0, -55, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Also number of involutions on n labeled elements with k fixed points times (-1)^(number of 2-cycles). Also called normalized Hermite polynomials. He_n(x) := H_n(x/sqrt(2)) / sqrt(2)^n, with the coefficients of H_n(x) given in A060821. See the Maple program. - Wolfdieter Lang, Jan 13 2020 REFERENCES F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 89,94 (2.3.41,54). LINKS Robert Israel, Rows n=0..140 of triangle, flattened P. Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, chapter 8. P. Diaconis and A. Gamburd, Random matrices, magic squares and matching polynomials, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6), Research Paper #R2. E. Elizalde, Cosmology: techniques and observations, arXiv:gr-qc/0409076, 2004. D. Foata, Une méthode combinatoire pour l'étude des fonctions spéciales, Journées sur les méthodes en mathématiques, Institut Henri Poincaré, Paris 2-3 april 2003. R. Sazdanovic, A categorification of the polynomial ring, slide presentation, 2011. [Tom Copeland, Dec 27 2015] Index entries for sequences related to Hermite polynomials FORMULA T(n, k) = (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!) for n-k even, 0 otherwise. E.g.f. of row polynomials {He_n(y)}: A(x, y) = exp(x*y - x^2/2). The umbral compositional inverses (cf. A001147) of the polynomials He(n,x) are given by the same polynomials unsigned, A099174. - Tom Copeland, Nov 15 2014 Exp(-D^2/2) x^n = He_n(x) = p_n(x+1) with D = d/dx and p_n(x), the row polynomials of A159834. These are an Appell sequence of polynomials with lowering and raising operators L = D and R = x - D. - Tom Copeland, Jun 26 2018 EXAMPLE Triangle begins: 1; 0, 1; -1, 0, 1; 0, -3, 0, 1; 3, 0, -6, 0, 1; 0, 15, 0, -10, 0, 1; -15, 0, 45, 0, -15, 0, 1; 0, -105, 0, 105, 0, -21, 0, 1; ... MAPLE Q:= [seq(orthopoly[H](n, x/sqrt(2))/2^(n/2), n=0..20)]: seq(seq(coeff(Q[n+1], x, k), k=0..n), n=0..20); # Robert Israel, Jan 01 2016 # Alternative: T := proc(n, k) option remember; if k > n then 0 elif n = k then 1 else (T(n, k+2)*(k+2)*(k+1))/(k-n) fi end: seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023 MATHEMATICA H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x] - (n-1)*H[n-2, x] // Expand; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten (* Jean-François Alcover, May 11 2015 *) PROG (Sage) def A066325_row(n): T = [0]*(n+1) if n==1: return [1] for m in (1..n-1): a, b, c = 1, 0, 0 for k in range(m, -1, -1): r = a - (k+1)*c if k < m : T[k+2] = u; a, b, c = T[k-1], a, b u = r T[1] = u; return T[1:] for n in (1..11): A066325_row(n) # Peter Luschny, Nov 01 2012 (Sage) # uses[riordan_array from A256893] riordan_array(exp(-x^2/2), x, 8, True) # Peter Luschny, Nov 23 2018 (Python) from sympy import Poly from sympy.abc import x def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x) def a(n): return Poly(H(n, x), x).all_coeffs()[::-1] for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017 (PARI) for(n=0, 12, for(k=0, n, print1(if(Mod(n-k, 2)==0, (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!), 0), ", "))) \\ G. C. Greubel, Nov 23 2018 CROSSREFS Row sums: A001464 (with different signs). Row sums of absolute values: A000085. Absolute values are given in A099174. Cf. A159834, A001147, A060281 (Hermite H_n(x)). Sequence in context: A247622 A256037 A179898 * A099174 A137297 A178117 Adjacent sequences: A066322 A066323 A066324 * A066326 A066327 A066328 KEYWORD sign,easy,tabl AUTHOR Christian G. Bower, Dec 14 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 21:30 EDT 2024. Contains 372666 sequences. (Running on oeis4.)