login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159834
Coefficient array of Hermite_H(n, (x-1)/sqrt(2))/(sqrt(2))^n.
3
1, -1, 1, 0, -2, 1, 2, 0, -3, 1, -2, 8, 0, -4, 1, -6, -10, 20, 0, -5, 1, 16, -36, -30, 40, 0, -6, 1, 20, 112, -126, -70, 70, 0, -7, 1, -132, 160, 448, -336, -140, 112, 0, -8, 1, -28, -1188, 720, 1344, -756, -252, 168, 0, -9, 1
OFFSET
0,5
COMMENTS
Exponential Riordan array [exp(-x-x^2/2), x].
FORMULA
G.f.: 1/(1-xy+x+x^2/(1-xy+x+2x^2/(1-xy+x+3x^2/(1-xy+x+4x^2/(1-... (continued fraction).
From Tom Copeland, Jun 26 2018: (Start)
E.g.f.: exp[t*p.(x)] = exp[-(t + t^2/2)] e^(x*t).
T(n,k) = binomial(n,k) * A001464(n-k).
These polynomials (p.(x))^n = p_n(x) are an Appell sequence with the lowering and raising operators L = D and R = x - 1 - D, with D = d/dx, such that L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), so the formalism of A133314 applies here, giving recursion relations.
The transpose of the production matrix gives a matrix representation of the raising operator R, with left multiplication of the rows of this entry treated as column vectors.
exp(-(D + D^2/2)) x^n= e^(-D^2/2) (x - 1)^n = He_n(x-1) = p_n(x) = (a. + x)^n, with (a.)^n = a_n = A001464(n) and He_n(x), the unitary or normalized Hermite polynomials of A066325.
A111062 with the e.g.f. exp[t + t^2/2] e^(x*t) gives the matrix inverse for this entry with the umbral inverse polynomials q_n(x), an Appell sequence with the raising operator x + 1 + D, such that umbrally composed q_n(p.(x)) = x^n = p_n(q.(x)). (End)
EXAMPLE
Triangle begins:
1,
-1, 1,
0, -2, 1,
2, 0, -3, 1,
-2, 8, 0, -4, 1,
-6, -10, 20, 0, -5, 1,
16, -36, -30, 40, 0, -6, 1,
20, 112, -126, -70, 70, 0, -7, 1,
-132, 160, 448, -336, -140, 112, 0, -8, 1
Production matrix is:
-1, 1,
-1, -1, 1,
0, -2, -1, 1,
0, 0, -3, -1, 1,
0, 0, 0, -4, -1, 1,
0, 0, 0, 0, -5, -1, 1,
0, 0, 0, 0, 0, -6, -1, 1,
0, 0, 0, 0, 0, 0, -7, -1, 1
MAPLE
Trow := proc(n) local b, f; b := proc(n, m) option remember; if n < m or m < 0 then
0 elif n = 0 and m = 0 then 1 else b(n-1, m) + b(n-1, m-1) fi end:
f := proc(n) option remember; if n = 0 then 1 elif n = 1 then -1
else f(n-2) - f(n-1) - f(n-2)*n fi end; seq(b(n, k)*f(n-k), k=0..n) end:
seq(Trow(n), n=0..20); # Peter Luschny, Aug 19 2018
MATHEMATICA
T[n_] := CoefficientList[Series[HermiteH[n, (x-1)/Sqrt[2]], {x, 0, 50}], x]/ (Sqrt[2])^n; Table[T[n], {n, 0, 20}] // Flatten (* G. C. Greubel, May 19 2018 *)
PROG
(PARI) row(n) = apply(x->round(x), Vecrev(polhermite(n, (x-1)/sqrt(2))/ (sqrt(2))^n));
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Aug 11 2018
CROSSREFS
Inverse of A111062.
Equal to A066325*(A007318)^{-1}.
First column is A001464.
Row sums are (-1)^n*A001147(n) aerated.
Cf. A133314.
Sequence in context: A272608 A257460 A339471 * A274576 A257081 A271484
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Apr 23 2009
STATUS
approved