login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111062
Triangle T(n, k) = binomial(n, k) * A000085(n-k), 0 <= k <= n.
5
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 10, 16, 12, 4, 1, 26, 50, 40, 20, 5, 1, 76, 156, 150, 80, 30, 6, 1, 232, 532, 546, 350, 140, 42, 7, 1, 764, 1856, 2128, 1456, 700, 224, 56, 8, 1, 2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1, 9496, 26200, 34380, 27840, 15960, 6552, 2100, 480, 90, 10, 1
OFFSET
0,4
COMMENTS
Triangle related to A000085.
Riordan array [exp(x(2+x)/2),x]. - Paul Barry, Nov 05 2008
Array is exp(S+S^2/2) where S is A132440 the infinitesimal generator for Pascal's triangle. T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then partitioning the remaining n-k elements into sets each of size 1 or 2. Cf. A122832. - Peter Bala, May 14 2012
T(n,k) is equal to the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the partial Brauer monoid of degree n. - James East, Aug 17 2015
LINKS
Igor Dolinka, James East, Athanasios Evangelou, Des FitzGerald, Nicholas Ham, James Hyde, and Nicholas Loughlin, Enumeration of idempotents in diagram semigroups and algebras, arXiv:1408.2021 [math.GR], 2014.
Igor Dolinka, James East, Athanasios Evangelou, Des FitzGerald, Nicholas Ham, James Hyde, and Nicholas Loughlin, Enumeration of idempotents in diagram semigroups and algebras, J. Combin. Theory Ser. A 131 (2015), 119-152.
Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
FORMULA
Sum_{k>=0} T(m, k)*T(n, k)*k! = T(m+n, 0) = A000085(m+n).
Sum_{k=0..n} T(n, k) = A005425(n).
Apparently satisfies T(n,m) = T(n-1,m-1) + T(n-1,m) + m * T(n-1,m+1). - Franklin T. Adams-Watters, Dec 22 2005
T(n,k) = (n!/k!)*Sum_{j=0..n-k} C(j,n-k-j)/(j!*2^(n-k-j)). - Paul Barry, Nov 05 2008
G.f.: 1/(1-xy-x-x^2/(1-xy-x-2x^2/(1-xy-x-3x^2/(1-xy-x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009
T(n,k) = C(n,k)*Sum_{j=0..n-k} C(n-k,j)*(n-k-j-1)!! where m!!=0 if m is even. - James East, Aug 17 2015
From Tom Copeland, Jun 26 2018: (Start)
E.g.f.: exp[t*p.(x)] = exp[t + t^2/2] e^(x*t).
These polynomials (p.(x))^n = p_n(x) are an Appell sequence with the lowering and raising operators L = D and R = x + 1 + D, with D = d/dx, such that L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), so the formalism of A133314 applies here, giving recursion relations.
The transpose of the production matrix gives a matrix representation of the raising operator R.
exp(D + D^2/2) x^n= e^(D^2/2) (1+x)^n = h_n(1+x) = p_n(x) = (a. + x)^n, with (a.)^n = a_n = A000085(n) and h_n(x) the modified Hermite polynomials of A099174.
A159834 with the e.g.f. exp[-(t + t^2/2)] e^(x*t) gives the matrix inverse for this entry with the umbral inverse polynomials q_n(x), an Appell sequence with the raising operator x - 1 - D, such that umbrally composed q_n(p.(x)) = x^n = p_n(q.(x)). (End)
EXAMPLE
Rows begin:
1;
1, 1;
2, 2, 1;
4, 6, 3, 1;
10, 16, 12, 4, 1;
26, 50, 40, 20, 5, 1;
76, 156, 150, 80, 30, 6, 1;
232, 532, 546, 350, 140, 42, 7, 1;
764, 1856, 2128, 1456, 700, 224, 56, 8, 1;
2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1;
From Paul Barry, Apr 23 2009: (Start)
Production matrix is:
1, 1,
1, 1, 1,
0, 2, 1, 1,
0, 0, 3, 1, 1,
0, 0, 0, 4, 1, 1,
0, 0, 0, 0, 5, 1, 1,
0, 0, 0, 0, 0, 6, 1, 1,
0, 0, 0, 0, 0, 0, 7, 1, 1,
0, 0, 0, 0, 0, 0, 0, 8, 1, 1 (End)
From Peter Bala, Feb 12 2017: (Start)
The infinitesimal generator has integer entries and begins
0
1 0
1 2 0
0 3 3 0
0 0 6 4 0
0 0 0 10 5 0
0 0 0 0 15 6 0
...
and is the generalized exponential Riordan array [x + x^2/2!,x].(End)
MATHEMATICA
a[n_] := Sum[(2 k - 1)!! Binomial[n, 2 k], {k, 0, n/2}]; Table[Binomial[n, k] a[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 20 2015, after Michael Somos at A000085 *)
PROG
(Sage)
def A111062_triangle(dim):
M = matrix(ZZ, dim, dim)
for n in (0..dim-1): M[n, n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n, k] = M[n-1, k-1]+M[n-1, k]+(k+1)*M[n-1, k+1]
return M
A111062_triangle(9) # Peter Luschny, Sep 19 2012
(GAP) Flat(List([0..10], n->List([0..n], k->(Factorial(n)/Factorial(k))*Sum([0..n-k], j->Binomial(j, n-k-j)/(Factorial(j)*2^(n-k-j)))))); # Muniru A Asiru, Jun 29 2018
CROSSREFS
Cf. A099174, A133314, A159834 (inverse matrix).
Sequence in context: A091869 A112307 A228336 * A369632 A363493 A193597
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 07 2005
EXTENSIONS
Corrected by Franklin T. Adams-Watters, Dec 22 2005
10th row added by James East, Aug 17 2015
STATUS
approved