login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112307
Triangle read by rows: T(n,k) is number of Dyck paths of semilength n with height of second peak equal to k (n>=1; 0<=k<=n-1).
1
1, 1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 9, 16, 12, 4, 1, 23, 44, 39, 20, 5, 1, 65, 128, 123, 76, 30, 6, 1, 197, 392, 393, 268, 130, 42, 7, 1, 626, 1250, 1284, 928, 505, 204, 56, 8, 1, 2056, 4110, 4287, 3216, 1880, 864, 301, 72, 9, 1, 6918, 13834, 14583, 11224, 6885, 3438, 1379
OFFSET
1,5
COMMENTS
Row sums are the Catalan numbers (A000108). T(n,0)=1 (paths have only one peak); The g.f. for column k is kz^(k+1)*c^k/(1-z), where c=[1-sqrt(1-4z)]/(2z) is the Catalan function. T(n,1)=A014137(n-1); T(n,2)=2*A014138(n-3); T(n,3)=3*A001453(n-2); T(n,4)=4*A114277(n-5); Sum(k*T(n,k), k=0..n-1)=A112308(n-2).
FORMULA
G.f.=[(1-tzc)^2+tz^2*c]/[(1-z)(1-tzc)^2]-1, where c=[1-sqrt(1-4z)]/(2z) is the Catalan function.
EXAMPLE
T(4,1)=4 because we have UDUDUDUD, UDUDUUDD, UUDDUDUD and UUUDDDUD, where U=(1,1), D=(1,-1).
Triangle begins:
1;
1,1;
1,2,2;
1,4,6,3;
1,9,16,12,4;
MAPLE
G:=((1-t*z*c)^2+t*z^2*c)/(1-z)/(1-t*z*c)^2-1: c:=(1-sqrt(1-4*z))/2/z: Gser:=simplify(series(G, z=0, 15)): for n from 1 to 12 do P[n]:=coeff(Gser, z^n) od: for n from 1 to 12 do seq(coeff(t*P[n], t^j), j=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Nov 30 2005
STATUS
approved