login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112308
Sum of the heights of the second peaks in all Dyck paths of semilength n+2.
2
1, 6, 25, 93, 333, 1180, 4183, 14895, 53349, 192239, 696765, 2539157, 9299547, 34215102, 126411177, 468822297, 1744799967, 6514363557, 24393558687, 91591471287, 344764147407, 1300756937445, 4918188617379, 18633066901747
OFFSET
0,2
COMMENTS
a(n) = Sum_{k=0..n+1} k*A112307(n+2,k).
LINKS
FORMULA
G.f.: c^4*(1+z*c)/(1-z), where c=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
Recurrence: (n+4)*(221*n-49)*a(n) = (1105*n^2 + 2877*n + 1178)*a(n-1) - 2*(442*n^2 + 1077*n + 659)*a(n-2) + 56*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
D-finite with recurrence 2*(n+4)*a(n) +(-15*n-38)*a(n-1) +2*(17*n+20)*a(n-2) +(-25*n-4)*a(n-3) +2*(2*n-3)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
a(n) ~ 13*2^(2*n+4)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
EXAMPLE
a(1)=6 because the second peaks of the Dyck paths UDUDUD, UDUUDD, UUDDUD, UUDUDD and UUUDDD, where U=(1,1), D=(1,-1), are 1, 2, 1, 2 and 0, respectively.
MAPLE
c:=(1-sqrt(1-4*z))/2/z: g:=series(c^4*(1+z*c)/(1-z), z=0, 32): 1, seq(coeff(g, z^n), n=1..27);
MATHEMATICA
CoefficientList[Series[((1-Sqrt[1-4*x])/(2*x))^4*(1+x*(1-Sqrt[1-4*x])/(2*x))/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
CROSSREFS
Cf. A112307.
Partial sums of A070857.
Sequence in context: A209241 A369360 A092491 * A034336 A291230 A092184
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 30 2005
STATUS
approved