login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291230
p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)(1 - 2 S)(1 - 3 S).
2
6, 25, 96, 351, 1242, 4304, 14706, 49761, 167232, 559303, 1864110, 6197472, 20567262, 68166713, 225713280, 746866143, 2470077378, 8166190192, 26990599050, 89190984033, 294691499808, 973574384231, 3216160413654, 10623856065984, 35092075282998, 115910575744921
OFFSET
0,1
COMMENTS
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.
FORMULA
G.f.: (-6 + 11 x + 6 x^2 - 11 x^3 - 6 x^4)/(-1 + 6 x - 8 x^2 - 6 x^3 + 8 x^4 + 6 x^5 + x^6).
a(n) = 6*a(n-1) - 8*a(n-2) - 6*a(n-3) + 8*a(n-4) + 6*a(n-5) + a(n-6) for n >= 7.
MATHEMATICA
z = 60; s = x/(1 - x^2); p = (1 - s)(1 - 2 s)(1 - 3 s);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291230 *)
CROSSREFS
Sequence in context: A092491 A112308 A034336 * A092184 A214955 A286433
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 25 2017
STATUS
approved