The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291228 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - 2 S - 2 S^2. 3
 2, 6, 18, 56, 170, 522, 1594, 4880, 14922, 45654, 139642, 427176, 1306690, 3997146, 12227058, 37402144, 114411538, 349980390, 1070575586, 3274847512, 10017625050, 30643508586, 93737246762, 286738430256, 877121205338, 2683078129590, 8207426973258 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).  Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A291219 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2, 4, -2, -1) FORMULA G.f.: -((2 (-1 - x + x^2))/(1 - 2 x - 4 x^2 + 2 x^3 + x^4)). a(n) = 2*a(n-1) + 4*a(n-2) - 2*a(n-3) - a(n-4) for n >= 5. a(n) = 2*A291257(n) for n >= 0. MATHEMATICA z = 60; s = x/(1 - x^2); p = 1 - 2 s - 2 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291228 *) u/2         (* A291257 *) LinearRecurrence[{2, 4, -2, -1}, {2, 6, 18, 56}, 30] (* Harvey P. Dale, Aug 08 2019 *) CROSSREFS Cf. A000035, A291219, A291257. Sequence in context: A182881 A291730 A002999 * A091142 A275857 A111961 Adjacent sequences:  A291225 A291226 A291227 * A291229 A291230 A291231 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 13:50 EDT 2021. Contains 343884 sequences. (Running on oeis4.)